Spaces:
Runtime error
Runtime error
File size: 5,697 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โ ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ๋จ์ผ ์์ ๊ธฐ๋ฐ ๊น์ด ์ถ์ [[depth-estimation-pipeline]]
๋จ์ผ ์์ ๊ธฐ๋ฐ ๊น์ด ์ถ์ ์ ํ ์ฅ๋ฉด์ ๋จ์ผ ์ด๋ฏธ์ง์์ ์ฅ๋ฉด์ ๊น์ด ์ ๋ณด๋ฅผ ์์ธกํ๋ ์ปดํจํฐ ๋น์ ์์
์
๋๋ค.
์ฆ, ๋จ์ผ ์นด๋ฉ๋ผ ์์ ์ ์ฅ๋ฉด์ ์๋ ๋ฌผ์ฒด์ ๊ฑฐ๋ฆฌ๋ฅผ ์์ธกํ๋ ๊ณผ์ ์
๋๋ค.
๋จ์ผ ์์ ๊ธฐ๋ฐ ๊น์ด ์ถ์ ์ 3D ์ฌ๊ตฌ์ฑ, ์ฆ๊ฐ ํ์ค, ์์จ ์ฃผํ, ๋ก๋ด ๊ณตํ ๋ฑ ๋ค์ํ ๋ถ์ผ์์ ์์ฉ๋ฉ๋๋ค.
์กฐ๋ช
์กฐ๊ฑด, ๊ฐ๋ ค์ง, ํ
์ค์ฒ์ ๊ฐ์ ์์์ ์ํฅ์ ๋ฐ์ ์ ์๋ ์ฅ๋ฉด ๋ด ๋ฌผ์ฒด์ ํด๋น ๊น์ด ์ ๋ณด ๊ฐ์ ๋ณต์กํ ๊ด๊ณ๋ฅผ ๋ชจ๋ธ์ด ์ดํดํด์ผ ํ๋ฏ๋ก ๊น๋ค๋ก์ด ์์
์
๋๋ค.
<Tip>
์ด ํํ ๋ฆฌ์ผ์์ ๋ค๋ฃจ๋ ์์
์ ๋ค์ ๋ชจ๋ธ ์ํคํ
์ฒ์์ ์ง์๋ฉ๋๋ค:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[DPT](../model_doc/dpt), [GLPN](../model_doc/glpn)
<!--End of the generated tip-->
</Tip>
์ด๋ฒ ๊ฐ์ด๋์์ ๋ฐฐ์ธ ๋ด์ฉ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค:
* ๊น์ด ์ถ์ ํ์ดํ๋ผ์ธ ๋ง๋ค๊ธฐ
* ์ง์ ๊น์ด ์ถ์ ์ถ๋ก ํ๊ธฐ
์์ํ๊ธฐ ์ ์, ํ์ํ ๋ชจ๋ ๋ผ์ด๋ธ๋ฌ๋ฆฌ๊ฐ ์ค์น๋์ด ์๋์ง ํ์ธํ์ธ์:
```bash
pip install -q transformers
```
## ๊น์ด ์ถ์ ํ์ดํ๋ผ์ธ[[depth-estimation-inference-by-hand]]
๊น์ด ์ถ์ ์ ์ถ๋ก ํ๋ ๊ฐ์ฅ ๊ฐ๋จํ ๋ฐฉ๋ฒ์ ํด๋น ๊ธฐ๋ฅ์ ์ ๊ณตํ๋ [`pipeline`]์ ์ฌ์ฉํ๋ ๊ฒ์
๋๋ค.
[Hugging Face Hub ์ฒดํฌํฌ์ธํธ](https://huggingface.co/models?pipeline_tag=depth-estimation&sort=downloads)์์ ํ์ดํ๋ผ์ธ์ ์ด๊ธฐํํฉ๋๋ค:
```py
>>> from transformers import pipeline
>>> checkpoint = "vinvino02/glpn-nyu"
>>> depth_estimator = pipeline("depth-estimation", model=checkpoint)
```
๋ค์์ผ๋ก, ๋ถ์ํ ์ด๋ฏธ์ง๋ฅผ ํ ์ฅ ์ ํํ์ธ์:
```py
>>> from PIL import Image
>>> import requests
>>> url = "https://unsplash.com/photos/HwBAsSbPBDU/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8MzR8fGNhciUyMGluJTIwdGhlJTIwc3RyZWV0fGVufDB8MHx8fDE2Nzg5MDEwODg&force=true&w=640"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-estimation-example.jpg" alt="Photo of a busy street"/>
</div>
์ด๋ฏธ์ง๋ฅผ ํ์ดํ๋ผ์ธ์ผ๋ก ์ ๋ฌํฉ๋๋ค.
```py
>>> predictions = depth_estimator(image)
```
ํ์ดํ๋ผ์ธ์ ๋ ๊ฐ์ ํญ๋ชฉ์ ๊ฐ์ง๋ ๋์
๋๋ฆฌ๋ฅผ ๋ฐํํฉ๋๋ค.
์ฒซ ๋ฒ์งธ๋ `predicted_depth`๋ก ๊ฐ ํฝ์
์ ๊น์ด๋ฅผ ๋ฏธํฐ๋ก ํํํ ๊ฐ์ ๊ฐ์ง๋ ํ
์์
๋๋ค.
๋ ๋ฒ์งธ๋ `depth`๋ก ๊น์ด ์ถ์ ๊ฒฐ๊ณผ๋ฅผ ์๊ฐํํ๋ PIL ์ด๋ฏธ์ง์
๋๋ค.
์ด์ ์๊ฐํํ ๊ฒฐ๊ณผ๋ฅผ ์ดํด๋ณด๊ฒ ์ต๋๋ค:
```py
>>> predictions["depth"]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-visualization.png" alt="Depth estimation visualization"/>
</div>
## ์ง์ ๊น์ด ์ถ์ ์ถ๋ก ํ๊ธฐ[[depth-estimation-inference-by-hand]]
์ด์ ๊น์ด ์ถ์ ํ์ดํ๋ผ์ธ ์ฌ์ฉ๋ฒ์ ์ดํด๋ณด์์ผ๋ ๋์ผํ ๊ฒฐ๊ณผ๋ฅผ ๋ณต์ ํ๋ ๋ฐฉ๋ฒ์ ์ดํด๋ณด๊ฒ ์ต๋๋ค.
[Hugging Face Hub ์ฒดํฌํฌ์ธํธ](https://huggingface.co/models?pipeline_tag=depth-estimation&sort=downloads)์์ ๋ชจ๋ธ๊ณผ ๊ด๋ จ ํ๋ก์ธ์๋ฅผ ๊ฐ์ ธ์ค๋ ๊ฒ๋ถํฐ ์์ํฉ๋๋ค.
์ฌ๊ธฐ์ ์ด์ ์ ์ฌ์ฉํ ์ฒดํฌํฌ์ธํธ์ ๋์ผํ ๊ฒ์ ์ฌ์ฉํฉ๋๋ค:
```py
>>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation
>>> checkpoint = "vinvino02/glpn-nyu"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint)
>>> model = AutoModelForDepthEstimation.from_pretrained(checkpoint)
```
ํ์ํ ์ด๋ฏธ์ง ๋ณํ์ ์ฒ๋ฆฌํ๋ `image_processor`๋ฅผ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ์ ๋ํ ์ด๋ฏธ์ง ์
๋ ฅ์ ์ค๋นํฉ๋๋ค.
`image_processor`๋ ํฌ๊ธฐ ์กฐ์ ๋ฐ ์ ๊ทํ ๋ฑ ํ์ํ ์ด๋ฏธ์ง ๋ณํ์ ์ฒ๋ฆฌํฉ๋๋ค:
```py
>>> pixel_values = image_processor(image, return_tensors="pt").pixel_values
```
์ค๋นํ ์
๋ ฅ์ ๋ชจ๋ธ๋ก ์ ๋ฌํฉ๋๋ค:
```py
>>> import torch
>>> with torch.no_grad():
... outputs = model(pixel_values)
... predicted_depth = outputs.predicted_depth
```
๊ฒฐ๊ณผ๋ฅผ ์๊ฐํํฉ๋๋ค:
```py
>>> import numpy as np
>>> # ์๋ณธ ์ฌ์ด์ฆ๋ก ๋ณต์
>>> prediction = torch.nn.functional.interpolate(
... predicted_depth.unsqueeze(1),
... size=image.size[::-1],
... mode="bicubic",
... align_corners=False,
... ).squeeze()
>>> output = prediction.numpy()
>>> formatted = (output * 255 / np.max(output)).astype("uint8")
>>> depth = Image.fromarray(formatted)
>>> depth
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-visualization.png" alt="Depth estimation visualization"/>
</div>
|