Spaces:
Runtime error
Runtime error
File size: 10,735 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for sequence classification."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def get_tfds(
train_file: str,
eval_file: str,
test_file: str,
tokenizer: PreTrainedTokenizer,
label_column_id: int,
max_seq_length: Optional[int] = None,
):
files = {}
if train_file is not None:
files[datasets.Split.TRAIN] = [train_file]
if eval_file is not None:
files[datasets.Split.VALIDATION] = [eval_file]
if test_file is not None:
files[datasets.Split.TEST] = [test_file]
ds = datasets.load_dataset("csv", data_files=files)
features_name = list(ds[list(files.keys())[0]].features.keys())
label_name = features_name.pop(label_column_id)
label_list = list(set(ds[list(files.keys())[0]][label_name]))
label2id = {label: i for i, label in enumerate(label_list)}
input_names = tokenizer.model_input_names
transformed_ds = {}
if len(features_name) == 1:
for k in files.keys():
transformed_ds[k] = ds[k].map(
lambda example: tokenizer.batch_encode_plus(
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length"
),
batched=True,
)
elif len(features_name) == 2:
for k in files.keys():
transformed_ds[k] = ds[k].map(
lambda example: tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]),
truncation=True,
max_length=max_seq_length,
padding="max_length",
),
batched=True,
)
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
train_ds = (
tf.data.Dataset.from_generator(
gen_train,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN])))
val_ds = (
tf.data.Dataset.from_generator(
gen_val,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION])))
test_ds = (
tf.data.Dataset.from_generator(
gen_test,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST])))
return train_ds, val_ds, test_ds, label2id
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
label_column_id: int = field(metadata={"help": "Which column contains the label"})
train_file: str = field(default=None, metadata={"help": "The path of the training file"})
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"})
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"})
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
f"16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
train_dataset, eval_dataset, test_ds, label2id = get_tfds(
train_file=data_args.train_file,
eval_file=data_args.dev_file,
test_file=data_args.test_file,
tokenizer=tokenizer,
label_column_id=data_args.label_column_id,
max_seq_length=data_args.max_seq_length,
)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=len(label2id),
label2id=label2id,
id2label={id: label for label, id in label2id.items()},
finetuning_task="text-classification",
cache_dir=model_args.cache_dir,
)
with training_args.strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_pt=bool(".bin" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
results.update(result)
return results
if __name__ == "__main__":
main()
|