File size: 8,673 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""

import logging
import os

import quant_trainer
import torch
from torch.utils.data import DataLoader

from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput


logger = logging.getLogger(__name__)

if is_torch_tpu_available(check_device=False):
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met


class QuestionAnsweringTrainer(Trainer):
    def __init__(self, *args, eval_examples=None, post_process_function=None, quant_trainer_args=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.eval_examples = eval_examples
        self.post_process_function = post_process_function
        self.quant_trainer_args = quant_trainer_args
        self.calib_num = 128  # default number of calibration samples

    def get_calib_dataloader(self, calib_dataset=None):
        """
        Returns the calibration dataloader :class:`~torch.utils.data.DataLoader`.

        Args:
            calib_dataset (:obj:`torch.utils.data.Dataset`, `optional`)
        """
        if calib_dataset is None and self.calib_dataset is None:
            raise ValueError("Trainer: calibration requires an calib_dataset.")
        calib_dataset = calib_dataset if calib_dataset is not None else self.calib_dataset

        calib_dataset = self._remove_unused_columns(calib_dataset, description="Calibration")

        return DataLoader(
            calib_dataset,
            batch_size=self.args.eval_batch_size,
            collate_fn=self.data_collator,
            drop_last=self.args.dataloader_drop_last,
            num_workers=self.args.dataloader_num_workers,
            pin_memory=self.args.dataloader_pin_memory,
            shuffle=True,
        )

    def calibrate(self, calib_dataset=None):
        calib_dataset = self.train_dataset if calib_dataset is None else calib_dataset
        calib_dataloader = self.get_calib_dataloader(calib_dataset)

        model = self.model
        quant_trainer.configure_model(model, self.quant_trainer_args, calib=True)
        model.eval()
        quant_trainer.enable_calibration(model)

        logger.info("***** Running calibration *****")
        logger.info(f"  Num examples = {self.calib_num}")
        logger.info(f"  Batch size = {calib_dataloader.batch_size}")

        for step, inputs in enumerate(calib_dataloader):
            # Prediction step
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only=True)
            if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
                break

        quant_trainer.finish_calibration(model, self.quant_trainer_args)
        self.model = model

    def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
        eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
        eval_examples = self.eval_examples if eval_examples is None else eval_examples

        # Temporarily disable metric computation, we will do it in the loop here.
        compute_metrics = self.compute_metrics
        self.compute_metrics = None
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        try:
            output = eval_loop(
                eval_dataloader,
                description="Evaluation",
                # No point gathering the predictions if there are no metrics, otherwise we defer to
                # self.args.prediction_loss_only
                prediction_loss_only=True if compute_metrics is None else None,
                ignore_keys=ignore_keys,
            )
        finally:
            self.compute_metrics = compute_metrics

        if self.post_process_function is not None and self.compute_metrics is not None:
            eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions)
            metrics = self.compute_metrics(eval_preds)

            # Prefix all keys with metric_key_prefix + '_'
            for key in list(metrics.keys()):
                if not key.startswith(f"{metric_key_prefix}_"):
                    metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

            self.log(metrics)
        else:
            metrics = {}

        if self.args.tpu_metrics_debug or self.args.debug:
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
        return metrics

    def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
        predict_dataloader = self.get_test_dataloader(predict_dataset)

        # Temporarily disable metric computation, we will do it in the loop here.
        compute_metrics = self.compute_metrics
        self.compute_metrics = None
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        try:
            output = eval_loop(
                predict_dataloader,
                description="Prediction",
                # No point gathering the predictions if there are no metrics, otherwise we defer to
                # self.args.prediction_loss_only
                prediction_loss_only=True if compute_metrics is None else None,
                ignore_keys=ignore_keys,
            )
        finally:
            self.compute_metrics = compute_metrics

        if self.post_process_function is None or self.compute_metrics is None:
            return output

        predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
        metrics = self.compute_metrics(predictions)

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)

    def save_onnx(self, output_dir="./"):
        eval_dataset = self.eval_dataset
        eval_dataloader = self.get_eval_dataloader(eval_dataset)

        batch = next(iter(eval_dataloader))

        # saving device - to make it consistent
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # convert to tuple
        input_tuple = tuple(v.to(device) for k, v in batch.items())

        logger.info("Converting model to be onnx compatible")
        from pytorch_quantization.nn import TensorQuantizer

        TensorQuantizer.use_fb_fake_quant = True

        model = self.model.to(device)

        model.eval()
        model.float()

        model_to_save = model.module if hasattr(model, "module") else model
        quant_trainer.configure_model(model_to_save, self.quant_trainer_args)

        output_model_file = os.path.join(output_dir, "model.onnx")
        logger.info(f"exporting model to {output_model_file}")

        axes = {0: "batch_size", 1: "seq_len"}

        torch.onnx.export(
            model_to_save,
            input_tuple,
            output_model_file,
            export_params=True,
            opset_version=13,
            do_constant_folding=True,
            input_names=["input_ids", "attention_mask", "token_type_ids"],
            output_names=["output_start_logits", "output_end_logits"],
            dynamic_axes={
                "input_ids": axes,
                "attention_mask": axes,
                "token_type_ids": axes,
                "output_start_logits": axes,
                "output_end_logits": axes,
            },
            verbose=True,
        )
        logger.info("onnx export finished")