File size: 3,791 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
### Saved Pseudo-Labels
These are the generations of various large models on various large **training** sets. All in all they took about 200 GPU hours to produce.

### Available Pseudo-labels
| Dataset | Model                       | Link                                                                                   | Rouge Scores       | Notes                                                                                                       
|---------|-----------------------------|----------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------
| XSUM    | `facebook/bart-large-xsum`    | [download](https://cdn-datasets.huggingface.co/pseudo/xsum/bart_xsum_pl.tgz)          | 49.8/28.0/42.5     |                                                                                                             
| XSUM    | `google/pegasus-xsum`         | [download](https://cdn-datasets.huggingface.co/pseudo/xsum/pegasus_xsum.tgz)          | 53.3/32.7/46.5     |                                                                                                             
| XSUM    | `facebook/bart-large-xsum`    | [download](https://cdn-datasets.huggingface.co/pseudo/xsum/xsum_pl2_bart.tgz)         |                   | Bart pseudolabels filtered to those with Rouge2 > 10.0 w GT.                                                 
| CNN/DM  | `sshleifer/pegasus-cnn-ft-v2` | [download](https://cdn-datasets.huggingface.co/pseudo/cnn_dm/pegasus_cnn_cnn_pls.tgz) | 47.316/26.65/44.56 | do not worry about the fact that train.source is one line shorter.                                          
| CNN/DM  | `facebook/bart-large-cnn`     | [download](https://cdn-datasets.huggingface.co/pseudo/cnn_dm/cnn_bart_pl.tgz)         |                    | 5K (2%) are missing, there should be 282173                                                                 
| CNN/DM  | `google/pegasus-xsum`         | [download](https://cdn-datasets.huggingface.co/pseudo/cnn_dm/pegasus_xsum_on_cnn.tgz) | 21.5/6.76/25       | extra labels for xsum distillation  Used max_source_length=512, (and all other pegasus-xsum configuration). 
| EN-RO   | `Helsinki-NLP/opus-mt-en-ro`  | [download](https://cdn-datasets.huggingface.co/pseudo/wmt_en_ro/opus_mt_en_ro.tgz) |       |  
| EN-RO   | `facebook/mbart-large-en-ro`  | [download](https://cdn-datasets.huggingface.co/pseudo/wmt_en_ro/mbart_large_en_ro.tgz) |       |  


(EN_RO = WMT 2016 English-Romanian).

Example Download Command:
```bash
curl -S https://cdn-datasets.huggingface.co/pseudo/xsum/bart_xsum_pl.tgz | tar -xvz -C .
```
### Generating New Pseudolabels
Here is the command I used to generate the pseudolabels in the second row of the table, after downloading XSUM from [here](https://cdn-datasets.huggingface.co/summarization/xsum.tar.gz). 

```bash                                                                         
python -m torch.distributed.launch --nproc_per_node=8 run_distributed_eval.py \
    --model_name google/pegasus-xsum \ 
    --save_dir pegasus_xsum \ 
    --data_dir xsum \
    --bs 8 --sync_timeout 60000 \
    --max_source_length 512 \
    --type_path train
```

+ These commands takes a while to run. For example, `pegasus_cnn_cnn_pls.tgz` took 8 hours on 8 GPUs.
+ Pegasus does not work in fp16 :(, Bart, mBART and Marian do.
+ Even if you have 1 GPU, `run_distributed_eval.py` is 10-20% faster than `run_eval.py` because it uses `SortishSampler` to minimize padding computation.

### Contributions
Feel free to contribute your own pseudolabels via PR. Add a row to this table with a new google drive link (or other command line downloadable link).