Spaces:
Runtime error
Runtime error
File size: 10,218 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for training a masked language model on TPU."""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
logger = logging.getLogger(__name__)
AUTO = tf.data.AUTOTUNE
def parse_args():
parser = argparse.ArgumentParser(description="Train a masked language model on TPU.")
parser.add_argument(
"--pretrained_model_config",
type=str,
default="roberta-base",
help="The model config to use. Note that we don't copy the model's weights, only the config!",
)
parser.add_argument(
"--tokenizer",
type=str,
default="unigram-tokenizer-wikitext",
help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.",
)
parser.add_argument(
"--per_replica_batch_size",
type=int,
default=8,
help="Batch size per TPU core.",
)
parser.add_argument(
"--no_tpu",
action="store_true",
help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.",
)
parser.add_argument(
"--tpu_name",
type=str,
help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.",
default="local",
)
parser.add_argument(
"--tpu_zone",
type=str,
help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.",
)
parser.add_argument(
"--gcp_project", type=str, help="Google cloud project name. Only used for non-Colab TPU nodes."
)
parser.add_argument(
"--bfloat16",
action="store_true",
help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.",
)
parser.add_argument(
"--train_dataset",
type=str,
help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket.",
)
parser.add_argument(
"--shuffle_buffer_size",
type=int,
default=2**18, # Default corresponds to a 1GB buffer for seq_len 512
help="Size of the shuffle buffer (in samples)",
)
parser.add_argument(
"--eval_dataset",
type=str,
help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket.",
)
parser.add_argument(
"--num_epochs",
type=int,
default=1,
help="Number of epochs to train for.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use for training.",
)
parser.add_argument(
"--weight_decay_rate",
type=float,
default=1e-3,
help="Weight decay rate to use for training.",
)
parser.add_argument(
"--max_length",
type=int,
default=512,
help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py",
)
parser.add_argument(
"--mlm_probability",
type=float,
default=0.15,
help="Fraction of tokens to mask during training.",
)
parser.add_argument("--output_dir", type=str, required=True, help="Path to save model checkpoints to.")
parser.add_argument("--hub_model_id", type=str, help="Model ID to upload to on the Hugging Face Hub.")
args = parser.parse_args()
return args
def initialize_tpu(args):
try:
if args.tpu_name:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project
)
else:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local."
)
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
return tpu
def count_samples(file_list):
num_samples = 0
for file in file_list:
filename = file.split("/")[-1]
sample_count = re.search(r"-\d+-(\d+)\.tfrecord", filename).group(1)
sample_count = int(sample_count)
num_samples += sample_count
return num_samples
def prepare_dataset(records, decode_fn, mask_fn, batch_size, shuffle, shuffle_buffer_size=None):
num_samples = count_samples(records)
dataset = tf.data.Dataset.from_tensor_slices(records)
if shuffle:
dataset = dataset.shuffle(len(dataset))
dataset = tf.data.TFRecordDataset(dataset, num_parallel_reads=AUTO)
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
dataset = dataset.apply(tf.data.experimental.assert_cardinality(num_samples))
dataset = dataset.map(decode_fn, num_parallel_calls=AUTO)
if shuffle:
assert shuffle_buffer_size is not None
dataset = dataset.shuffle(args.shuffle_buffer_size)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.map(mask_fn, num_parallel_calls=AUTO)
dataset = dataset.prefetch(AUTO)
return dataset
def main(args):
if not args.no_tpu:
tpu = initialize_tpu(args)
strategy = tf.distribute.TPUStrategy(tpu)
else:
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
if args.bfloat16:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16")
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
config = AutoConfig.from_pretrained(args.pretrained_model_config)
config.vocab_size = tokenizer.vocab_size
training_records = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord"))
if not training_records:
raise ValueError(f"No .tfrecord files found in {args.train_dataset}.")
eval_records = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord"))
if not eval_records:
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}.")
num_train_samples = count_samples(training_records)
steps_per_epoch = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
total_train_steps = steps_per_epoch * args.num_epochs
with strategy.scope():
model = TFAutoModelForMaskedLM.from_config(config)
model(model.dummy_inputs) # Pass some dummy inputs through the model to ensure all the weights are built
optimizer, schedule = create_optimizer(
num_train_steps=total_train_steps,
num_warmup_steps=total_train_steps // 20,
init_lr=args.learning_rate,
weight_decay_rate=args.weight_decay_rate,
)
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=optimizer, metrics=["accuracy"])
def decode_fn(example):
features = {
"input_ids": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)),
}
return tf.io.parse_single_example(example, features)
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm_probability=args.mlm_probability, mlm=True, return_tensors="tf"
)
def mask_with_collator(batch):
# TF really needs an isin() function
special_tokens_mask = (
~tf.cast(batch["attention_mask"], tf.bool)
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
batch["input_ids"], batch["labels"] = data_collator.tf_mask_tokens(
batch["input_ids"],
vocab_size=len(tokenizer),
mask_token_id=tokenizer.mask_token_id,
special_tokens_mask=special_tokens_mask,
)
return batch
batch_size = args.per_replica_batch_size * strategy.num_replicas_in_sync
train_dataset = prepare_dataset(
training_records,
decode_fn=decode_fn,
mask_fn=mask_with_collator,
batch_size=batch_size,
shuffle=True,
shuffle_buffer_size=args.shuffle_buffer_size,
)
eval_dataset = prepare_dataset(
eval_records,
decode_fn=decode_fn,
mask_fn=mask_with_collator,
batch_size=batch_size,
shuffle=False,
)
callbacks = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=tokenizer)
)
model.fit(
train_dataset,
validation_data=eval_dataset,
epochs=args.num_epochs,
callbacks=callbacks,
)
model.save_pretrained(args.output_dir)
if __name__ == "__main__":
args = parse_args()
main(args)
|