File size: 10,218 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Script for training a masked language model on TPU."""

import argparse
import logging
import os
import re

import tensorflow as tf

from transformers import (
    AutoConfig,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    PushToHubCallback,
    TFAutoModelForMaskedLM,
    create_optimizer,
)


logger = logging.getLogger(__name__)

AUTO = tf.data.AUTOTUNE


def parse_args():
    parser = argparse.ArgumentParser(description="Train a masked language model on TPU.")
    parser.add_argument(
        "--pretrained_model_config",
        type=str,
        default="roberta-base",
        help="The model config to use. Note that we don't copy the model's weights, only the config!",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        default="unigram-tokenizer-wikitext",
        help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.",
    )

    parser.add_argument(
        "--per_replica_batch_size",
        type=int,
        default=8,
        help="Batch size per TPU core.",
    )

    parser.add_argument(
        "--no_tpu",
        action="store_true",
        help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.",
    )

    parser.add_argument(
        "--tpu_name",
        type=str,
        help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.",
        default="local",
    )

    parser.add_argument(
        "--tpu_zone",
        type=str,
        help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.",
    )

    parser.add_argument(
        "--gcp_project", type=str, help="Google cloud project name. Only used for non-Colab TPU nodes."
    )

    parser.add_argument(
        "--bfloat16",
        action="store_true",
        help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.",
    )

    parser.add_argument(
        "--train_dataset",
        type=str,
        help="Path to training dataset to load. If the path begins with `gs://`"
        " then the dataset will be loaded from a Google Cloud Storage bucket.",
    )

    parser.add_argument(
        "--shuffle_buffer_size",
        type=int,
        default=2**18,  # Default corresponds to a 1GB buffer for seq_len 512
        help="Size of the shuffle buffer (in samples)",
    )

    parser.add_argument(
        "--eval_dataset",
        type=str,
        help="Path to evaluation dataset to load. If the path begins with `gs://`"
        " then the dataset will be loaded from a Google Cloud Storage bucket.",
    )

    parser.add_argument(
        "--num_epochs",
        type=int,
        default=1,
        help="Number of epochs to train for.",
    )

    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Learning rate to use for training.",
    )

    parser.add_argument(
        "--weight_decay_rate",
        type=float,
        default=1e-3,
        help="Weight decay rate to use for training.",
    )

    parser.add_argument(
        "--max_length",
        type=int,
        default=512,
        help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py",
    )

    parser.add_argument(
        "--mlm_probability",
        type=float,
        default=0.15,
        help="Fraction of tokens to mask during training.",
    )

    parser.add_argument("--output_dir", type=str, required=True, help="Path to save model checkpoints to.")
    parser.add_argument("--hub_model_id", type=str, help="Model ID to upload to on the Hugging Face Hub.")

    args = parser.parse_args()
    return args


def initialize_tpu(args):
    try:
        if args.tpu_name:
            tpu = tf.distribute.cluster_resolver.TPUClusterResolver(
                args.tpu_name, zone=args.tpu_zone, project=args.gcp_project
            )
        else:
            tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
    except ValueError:
        raise RuntimeError(
            "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
            "--gcp_project. When running on a TPU VM, use --tpu_name local."
        )

    tf.config.experimental_connect_to_cluster(tpu)
    tf.tpu.experimental.initialize_tpu_system(tpu)

    return tpu


def count_samples(file_list):
    num_samples = 0
    for file in file_list:
        filename = file.split("/")[-1]
        sample_count = re.search(r"-\d+-(\d+)\.tfrecord", filename).group(1)
        sample_count = int(sample_count)
        num_samples += sample_count

    return num_samples


def prepare_dataset(records, decode_fn, mask_fn, batch_size, shuffle, shuffle_buffer_size=None):
    num_samples = count_samples(records)
    dataset = tf.data.Dataset.from_tensor_slices(records)
    if shuffle:
        dataset = dataset.shuffle(len(dataset))
    dataset = tf.data.TFRecordDataset(dataset, num_parallel_reads=AUTO)
    # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
    dataset = dataset.apply(tf.data.experimental.assert_cardinality(num_samples))
    dataset = dataset.map(decode_fn, num_parallel_calls=AUTO)
    if shuffle:
        assert shuffle_buffer_size is not None
        dataset = dataset.shuffle(args.shuffle_buffer_size)
    dataset = dataset.batch(batch_size, drop_remainder=True)
    dataset = dataset.map(mask_fn, num_parallel_calls=AUTO)
    dataset = dataset.prefetch(AUTO)
    return dataset


def main(args):
    if not args.no_tpu:
        tpu = initialize_tpu(args)
        strategy = tf.distribute.TPUStrategy(tpu)
    else:
        strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")

    if args.bfloat16:
        tf.keras.mixed_precision.set_global_policy("mixed_bfloat16")

    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
    config = AutoConfig.from_pretrained(args.pretrained_model_config)
    config.vocab_size = tokenizer.vocab_size

    training_records = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord"))
    if not training_records:
        raise ValueError(f"No .tfrecord files found in {args.train_dataset}.")
    eval_records = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord"))
    if not eval_records:
        raise ValueError(f"No .tfrecord files found in {args.eval_dataset}.")

    num_train_samples = count_samples(training_records)

    steps_per_epoch = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
    total_train_steps = steps_per_epoch * args.num_epochs

    with strategy.scope():
        model = TFAutoModelForMaskedLM.from_config(config)
        model(model.dummy_inputs)  # Pass some dummy inputs through the model to ensure all the weights are built
        optimizer, schedule = create_optimizer(
            num_train_steps=total_train_steps,
            num_warmup_steps=total_train_steps // 20,
            init_lr=args.learning_rate,
            weight_decay_rate=args.weight_decay_rate,
        )

        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
        model.compile(optimizer=optimizer, metrics=["accuracy"])

    def decode_fn(example):
        features = {
            "input_ids": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)),
            "attention_mask": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)),
        }
        return tf.io.parse_single_example(example, features)

    # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
    # use their methods in our data pipeline.
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm_probability=args.mlm_probability, mlm=True, return_tensors="tf"
    )

    def mask_with_collator(batch):
        # TF really needs an isin() function
        special_tokens_mask = (
            ~tf.cast(batch["attention_mask"], tf.bool)
            | (batch["input_ids"] == tokenizer.cls_token_id)
            | (batch["input_ids"] == tokenizer.sep_token_id)
        )
        batch["input_ids"], batch["labels"] = data_collator.tf_mask_tokens(
            batch["input_ids"],
            vocab_size=len(tokenizer),
            mask_token_id=tokenizer.mask_token_id,
            special_tokens_mask=special_tokens_mask,
        )
        return batch

    batch_size = args.per_replica_batch_size * strategy.num_replicas_in_sync

    train_dataset = prepare_dataset(
        training_records,
        decode_fn=decode_fn,
        mask_fn=mask_with_collator,
        batch_size=batch_size,
        shuffle=True,
        shuffle_buffer_size=args.shuffle_buffer_size,
    )

    eval_dataset = prepare_dataset(
        eval_records,
        decode_fn=decode_fn,
        mask_fn=mask_with_collator,
        batch_size=batch_size,
        shuffle=False,
    )

    callbacks = []
    if args.hub_model_id:
        callbacks.append(
            PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=tokenizer)
        )

    model.fit(
        train_dataset,
        validation_data=eval_dataset,
        epochs=args.num_epochs,
        callbacks=callbacks,
    )

    model.save_pretrained(args.output_dir)


if __name__ == "__main__":
    args = parse_args()
    main(args)