File size: 6,690 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import GLPNImageProcessor


class GLPNImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size_divisor=32,
        do_rescale=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size_divisor = size_divisor
        self.do_rescale = do_rescale

    def prepare_image_processor_dict(self):
        return {
            "do_resize": self.do_resize,
            "size_divisor": self.size_divisor,
            "do_rescale": self.do_rescale,
        }

    def expected_output_image_shape(self, images):
        if isinstance(images[0], Image.Image):
            width, height = images[0].size
        else:
            height, width = images[0].shape[1], images[0].shape[2]

        height = height // self.size_divisor * self.size_divisor
        width = width // self.size_divisor * self.size_divisor

        return self.num_channels, height, width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            size_divisor=self.size_divisor,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class GLPNImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = GLPNImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = GLPNImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))

    def test_call_pil(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))

    def test_call_numpy(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))

    def test_call_pytorch(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))

    def test_call_numpy_4_channels(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        self.image_processing_class.num_channels = 4
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input (GLPNImageProcessor doesn't support batching)
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
        self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
        self.image_processing_class.num_channels = 3