File size: 20,593 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow LayoutLMv3 model. """

from __future__ import annotations

import copy
import inspect
import unittest

import numpy as np

from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_tf_available():
    import tensorflow as tf

    from transformers import (
        TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        LayoutLMv3Config,
        TFLayoutLMv3ForQuestionAnswering,
        TFLayoutLMv3ForSequenceClassification,
        TFLayoutLMv3ForTokenClassification,
        TFLayoutLMv3Model,
    )

if is_vision_available():
    from PIL import Image

    from transformers import LayoutLMv3ImageProcessor


class TFLayoutLMv3ModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        num_channels=3,
        image_size=4,
        patch_size=2,
        text_seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=36,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        coordinate_size=6,
        shape_size=6,
        num_labels=3,
        num_choices=4,
        scope=None,
        range_bbox=1000,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.patch_size = patch_size
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.coordinate_size = coordinate_size
        self.shape_size = shape_size
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.range_bbox = range_bbox

        # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
        self.text_seq_length = text_seq_length
        self.image_seq_length = (image_size // patch_size) ** 2 + 1
        self.seq_length = self.text_seq_length + self.image_seq_length

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size)

        bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox)
        bbox = bbox.numpy()
        # Ensure that bbox is legal
        for i in range(bbox.shape[0]):
            for j in range(bbox.shape[1]):
                if bbox[i, j, 3] < bbox[i, j, 1]:
                    tmp_coordinate = bbox[i, j, 3]
                    bbox[i, j, 3] = bbox[i, j, 1]
                    bbox[i, j, 1] = tmp_coordinate
                if bbox[i, j, 2] < bbox[i, j, 0]:
                    tmp_coordinate = bbox[i, j, 2]
                    bbox[i, j, 2] = bbox[i, j, 0]
                    bbox[i, j, 0] = tmp_coordinate
        bbox = tf.constant(bbox)

        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.text_seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels)

        config = LayoutLMv3Config(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            coordinate_size=self.coordinate_size,
            shape_size=self.shape_size,
            input_size=self.image_size,
            patch_size=self.patch_size,
        )

        return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels

    def create_and_check_model(self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask):
        model = TFLayoutLMv3Model(config=config)

        # text + image
        result = model(input_ids, pixel_values=pixel_values, training=False)
        result = model(
            input_ids,
            bbox=bbox,
            pixel_values=pixel_values,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            training=False,
        )
        result = model(input_ids, bbox=bbox, pixel_values=pixel_values, training=False)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

        # text only
        result = model(input_ids, training=False)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size)
        )

        # image only
        result = model({"pixel_values": pixel_values}, training=False)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size)
        )

    def create_and_check_for_sequence_classification(
        self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels
    ):
        config.num_labels = self.num_labels
        model = TFLayoutLMv3ForSequenceClassification(config=config)
        result = model(
            input_ids,
            bbox=bbox,
            pixel_values=pixel_values,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=sequence_labels,
            training=False,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_for_token_classification(
        self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels
    ):
        config.num_labels = self.num_labels
        model = TFLayoutLMv3ForTokenClassification(config=config)
        result = model(
            input_ids,
            bbox=bbox,
            pixel_values=pixel_values,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=token_labels,
            training=False,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels))

    def create_and_check_for_question_answering(
        self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels
    ):
        config.num_labels = 2
        model = TFLayoutLMv3ForQuestionAnswering(config=config)
        result = model(
            input_ids,
            bbox=bbox,
            pixel_values=pixel_values,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            training=False,
        )
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "bbox": bbox,
            "pixel_values": pixel_values,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


@require_tf
class TFLayoutLMv3ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            TFLayoutLMv3Model,
            TFLayoutLMv3ForQuestionAnswering,
            TFLayoutLMv3ForSequenceClassification,
            TFLayoutLMv3ForTokenClassification,
        )
        if is_tf_available()
        else ()
    )
    pipeline_model_mapping = (
        {"document-question-answering": TFLayoutLMv3ForQuestionAnswering, "feature-extraction": TFLayoutLMv3Model}
        if is_tf_available()
        else {}
    )

    test_pruning = False
    test_resize_embeddings = False
    test_onnx = False

    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
        inputs_dict = copy.deepcopy(inputs_dict)

        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
            inputs_dict = {
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
                else v
                for k, v in inputs_dict.items()
            }

        if return_labels:
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING):
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.int32
                )

        return inputs_dict

    def setUp(self):
        self.model_tester = TFLayoutLMv3ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "hf_compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[
                    sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
                ]
                expected_loss_size = added_label.shape.as_list()[:1]

                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")

                loss = model(input_ids, **prepared_for_class)[0]
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

                # Test that model correctly compute the loss when we mask some positions
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
                if "labels" in prepared_for_class:
                    labels = prepared_for_class["labels"].numpy()
                    if len(labels.shape) > 1 and labels.shape[1] != 1:
                        labels[0] = -100
                        prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                        loss = model(input_ids, **prepared_for_class)[0]
                        self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
                        self.assertTrue(not np.any(np.isnan(loss.numpy())))

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {0: "input_ids"}
                for label_key in label_keys:
                    label_key_index = signature_names.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)

                for index, value in sorted_tuple_index_mapping:
                    list_input[index] = prepared_for_class[value]

                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input[:-1])[0]

                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

    def test_model(self):
        (
            config,
            input_ids,
            bbox,
            pixel_values,
            token_type_ids,
            input_mask,
            _,
            _,
        ) = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask)

    def test_model_various_embeddings(self):
        (
            config,
            input_ids,
            bbox,
            pixel_values,
            token_type_ids,
            input_mask,
            _,
            _,
        ) = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config.position_embedding_type = type
            self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask)

    def test_for_sequence_classification(self):
        (
            config,
            input_ids,
            bbox,
            pixel_values,
            token_type_ids,
            input_mask,
            sequence_labels,
            _,
        ) = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(
            config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels
        )

    def test_for_token_classification(self):
        (
            config,
            input_ids,
            bbox,
            pixel_values,
            token_type_ids,
            input_mask,
            _,
            token_labels,
        ) = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(
            config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels
        )

    def test_for_question_answering(self):
        (
            config,
            input_ids,
            bbox,
            pixel_values,
            token_type_ids,
            input_mask,
            sequence_labels,
            _,
        ) = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_question_answering(
            config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels
        )

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFLayoutLMv3Model.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_tf
class TFLayoutLMv3ModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None

    @slow
    def test_inference_no_head(self):
        model = TFLayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base")

        image_processor = self.default_image_processor
        image = prepare_img()
        pixel_values = image_processor(images=image, return_tensors="tf").pixel_values

        input_ids = tf.constant([[1, 2]])
        bbox = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0)

        # forward pass
        outputs = model(input_ids=input_ids, bbox=bbox, pixel_values=pixel_values, training=False)

        # verify the logits
        expected_shape = (1, 199, 768)
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)

        expected_slice = tf.constant(
            [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]
        )

        self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))