Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library vision-encoder-decoder models for image captioning. | |
""" | |
import json | |
import logging | |
import os | |
import sys | |
import time | |
import warnings | |
from dataclasses import asdict, dataclass, field | |
from enum import Enum | |
from functools import partial | |
from pathlib import Path | |
from typing import Callable, Optional | |
import datasets | |
import evaluate | |
import jax | |
import jax.numpy as jnp | |
import nltk # Here to have a nice missing dependency error message early on | |
import numpy as np | |
import optax | |
from datasets import Dataset, load_dataset | |
from filelock import FileLock | |
from flax import jax_utils, traverse_util | |
from flax.jax_utils import unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
from huggingface_hub import Repository, create_repo | |
from PIL import Image | |
from tqdm import tqdm | |
import transformers | |
from transformers import ( | |
AutoImageProcessor, | |
AutoTokenizer, | |
FlaxVisionEncoderDecoderModel, | |
HfArgumentParser, | |
is_tensorboard_available, | |
) | |
from transformers.utils import is_offline_mode, send_example_telemetry | |
logger = logging.getLogger(__name__) | |
try: | |
nltk.data.find("tokenizers/punkt") | |
except (LookupError, OSError): | |
if is_offline_mode(): | |
raise LookupError( | |
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" | |
) | |
with FileLock(".lock") as lock: | |
nltk.download("punkt", quiet=True) | |
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right | |
def shift_tokens_right(input_ids: np.ndarray, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray: | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = np.zeros_like(input_ids) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1] | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
shifted_input_ids = np.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) | |
return shifted_input_ids | |
class TrainingArguments: | |
output_dir: str = field( | |
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
) | |
overwrite_output_dir: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Overwrite the content of the output directory. " | |
"Use this to continue training if output_dir points to a checkpoint directory." | |
) | |
}, | |
) | |
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) | |
per_device_train_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
) | |
per_device_eval_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
) | |
_block_size_doc = """ | |
The default value `0` will preprocess (tokenization + image processing) the whole dataset before training and | |
cache the results. This uses more disk space, but avoids (repeated) processing time during training. This is a | |
good option if your disk space is large enough to store the whole processed dataset. | |
If a positive value is given, the captions in the dataset will be tokenized before training and the results are | |
cached. During training, it iterates the dataset in chunks of size `block_size`. On each block, images are | |
transformed by the image processor with the results being kept in memory (no cache), and batches of size | |
`batch_size` are yielded before processing the next block. This could avoid the heavy disk usage when the | |
dataset is large. | |
""" | |
block_size: int = field(default=0, metadata={"help": _block_size_doc}) | |
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
label_smoothing_factor: float = field( | |
default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} | |
) | |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
push_to_hub: bool = field( | |
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
) | |
hub_model_id: str = field( | |
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
) | |
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
def __post_init__(self): | |
if self.output_dir is not None: | |
self.output_dir = os.path.expanduser(self.output_dir) | |
def to_dict(self): | |
""" | |
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
the token values by removing their value. | |
""" | |
d = asdict(self) | |
for k, v in d.items(): | |
if isinstance(v, Enum): | |
d[k] = v.value | |
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
d[k] = [x.value for x in v] | |
if k.endswith("_token"): | |
d[k] = f"<{k.upper()}>" | |
return d | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "The model checkpoint for weights initialization."}, | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": ( | |
"Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
" `[float32, float16, bfloat16]`." | |
) | |
}, | |
) | |
token: str = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
) | |
}, | |
) | |
use_auth_token: bool = field( | |
default=None, | |
metadata={ | |
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
}, | |
) | |
trust_remote_code: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
"should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
"execute code present on the Hub on your local machine." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
data_dir: Optional[str] = field( | |
default=None, metadata={"help": "The data directory of the dataset to use (via the datasets library)."} | |
) | |
image_column: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of the column in the datasets containing the full image file paths."}, | |
) | |
caption_column: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of the column in the datasets containing the image captions."}, | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, | |
) | |
max_target_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total sequence length for target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
val_max_target_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
"This argument is also used to override the `max_length` param of `model.generate`, which is used " | |
"during evaluation." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
predict_with_generate: bool = field( | |
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} | |
) | |
num_beams: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Number of beams to use for evaluation. This argument will be passed to `model.generate`, " | |
"which is used during evaluation." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
if extension not in ["csv", "json"]: | |
raise ValueError(f"`train_file` should be a csv or a json file, got {extension}.") | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
if extension not in ["csv", "json"]: | |
raise ValueError(f"`validation_file` should be a csv or a json file, got {extension}.") | |
if self.val_max_target_length is None: | |
self.val_max_target_length = self.max_target_length | |
image_captioning_name_mapping = { | |
"image_caption_dataset.py": ("image_path", "caption"), | |
} | |
class TrainState(train_state.TrainState): | |
dropout_rng: jnp.ndarray | |
def replicate(self): | |
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) | |
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): | |
""" | |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. | |
Shuffle batches if `shuffle` is `True`. | |
""" | |
steps = len(dataset) // batch_size # Skip incomplete batch. | |
# We use `numpy.ndarray` to interact with `datasets.Dataset`, since using `jax.numpy.array` to index into a | |
# dataset is significantly slow. Using JAX array at the 1st place is only to keep JAX's PRNGs generation | |
# mechanism, which works differently from NumPy/SciPy. | |
if shuffle: | |
batch_idx = jax.random.permutation(rng, len(dataset)) | |
batch_idx = np.asarray(batch_idx) | |
else: | |
batch_idx = np.arange(len(dataset)) | |
for idx in range(steps): | |
start_idx = batch_size * idx | |
end_idx = batch_size * (idx + 1) | |
selected_indices = batch_idx[start_idx:end_idx] | |
batch = dataset[selected_indices] | |
batch = shard(batch) | |
yield batch | |
def write_metric(summary_writer, metrics, train_time, step, metric_key_prefix="train"): | |
if train_time: | |
summary_writer.scalar("train_time", train_time, step) | |
metrics = get_metrics(metrics) | |
for key, vals in metrics.items(): | |
tag = f"{metric_key_prefix}_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
else: | |
for metric_name, value in metrics.items(): | |
summary_writer.scalar(f"{metric_key_prefix}_{metric_name}", value, step) | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if model_args.use_auth_token is not None: | |
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
if model_args.token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
model_args.token = model_args.use_auth_token | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_image_captioning", model_args, data_args, framework="flax") | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
"Use --overwrite_output_dir to overcome." | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Handle the repository creation | |
if training_args.push_to_hub: | |
# Retrieve of infer repo_name | |
repo_name = training_args.hub_model_id | |
if repo_name is None: | |
repo_name = Path(training_args.output_dir).absolute().name | |
# Create repo and retrieve repo_id | |
repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id | |
# Clone repo locally | |
repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) | |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files this script will use the first column for the full image path and the second column for the | |
# captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). | |
# | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
keep_in_memory=False, | |
data_dir=data_args.data_dir, | |
token=model_args.token, | |
) | |
else: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
dataset = load_dataset( | |
extension, | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
token=model_args.token, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Load pretrained model and tokenizer | |
model = FlaxVisionEncoderDecoderModel.from_pretrained( | |
model_args.model_name_or_path, | |
seed=training_args.seed, | |
dtype=getattr(jnp, model_args.dtype), | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
image_processor = AutoImageProcessor.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(model.config.pad_token_id) | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = dataset["train"].column_names | |
elif training_args.do_eval: | |
column_names = dataset["validation"].column_names | |
elif training_args.do_predict: | |
column_names = dataset["test"].column_names | |
else: | |
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
return | |
# Get the column names for input/target. | |
dataset_columns = image_captioning_name_mapping.get(data_args.dataset_name, None) | |
if data_args.image_column is None: | |
if dataset_columns is None: | |
raise ValueError( | |
f"`--dataset_name` {data_args.dataset_name} not found in dataset '{data_args.dataset_name}'. Make sure" | |
" to set `--dataset_name` to the correct dataset name, one of" | |
f" {', '.join(image_captioning_name_mapping.keys())}." | |
) | |
image_column = dataset_columns[0] | |
else: | |
image_column = data_args.image_column | |
if image_column not in column_names: | |
raise ValueError( | |
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if data_args.caption_column is None: | |
if dataset_columns is None: | |
raise ValueError( | |
f"`--dataset_name` {data_args.dataset_name} not found in dataset '{data_args.dataset_name}'. Make sure" | |
" to set `--dataset_name` to the correct dataset name, one of" | |
f" {', '.join(image_captioning_name_mapping.keys())}." | |
) | |
caption_column = dataset_columns[1] | |
else: | |
caption_column = data_args.caption_column | |
if caption_column not in column_names: | |
raise ValueError( | |
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
# In Flax, for seq2seq models we need to pass `decoder_input_ids` | |
# as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here | |
# for that dynamically import the `shift_tokens_right` function from the model file | |
model_module = __import__(model.__module__, fromlist=["shift_tokens_right"]) | |
shift_tokens_right_fn = getattr(model_module, "shift_tokens_right", shift_tokens_right) | |
def filter_fn(examples): | |
"""remove problematic images""" | |
bools = [] | |
for image_file in examples[image_column]: | |
try: | |
image = Image.open(image_file) | |
image_processor(images=image, return_tensors="np") | |
bools.append(True) | |
except Exception: | |
bools.append(False) | |
return bools | |
# Setting padding="max_length" as we need fixed length inputs for jitted functions | |
def tokenization_fn(examples, max_target_length): | |
"""Run tokenization on captions.""" | |
captions = [] | |
for caption in examples[caption_column]: | |
captions.append(caption.lower() + " " + tokenizer.eos_token) | |
targets = captions | |
model_inputs = {} | |
labels = tokenizer( | |
text_target=targets, | |
max_length=max_target_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="np", | |
) | |
model_inputs["labels"] = labels["input_ids"] | |
decoder_input_ids = shift_tokens_right_fn( | |
labels["input_ids"], model.config.pad_token_id, model.config.decoder_start_token_id | |
) | |
model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) | |
# We need decoder_attention_mask so we can ignore pad tokens from loss | |
model_inputs["decoder_attention_mask"] = labels["attention_mask"] | |
model_inputs[image_column] = examples[image_column] | |
return model_inputs | |
def image_processing_fn(examples, check_image=True): | |
""" | |
Run preprocessing on images | |
If `check_image` is `True`, the examples that fails during `Image.open()` will be caught and discarded. | |
Otherwise, an exception will be thrown. | |
""" | |
model_inputs = {} | |
if check_image: | |
images = [] | |
to_keep = [] | |
for image_file in examples[image_column]: | |
try: | |
img = Image.open(image_file) | |
images.append(img) | |
to_keep.append(True) | |
except Exception: | |
to_keep.append(False) | |
for k, v in examples.items(): | |
if k != image_column: | |
model_inputs[k] = v[to_keep] | |
else: | |
images = [Image.open(image_file) for image_file in examples[image_column]] | |
encoder_inputs = image_processor(images=images, return_tensors="np") | |
model_inputs["pixel_values"] = encoder_inputs.pixel_values | |
return model_inputs | |
def preprocess_fn(examples, max_target_length, check_image=True): | |
"""Run tokenization + image processing""" | |
model_inputs = {} | |
# This contains image path column | |
model_inputs.update(tokenization_fn(examples, max_target_length)) | |
model_inputs.update(image_processing_fn(model_inputs, check_image=check_image)) | |
# Remove image path column | |
model_inputs.pop(image_column) | |
return model_inputs | |
features = datasets.Features( | |
{ | |
"pixel_values": datasets.Array3D( | |
shape=( | |
getattr(model.config.encoder, "num_channels", 3), | |
model.config.encoder.image_size, | |
model.config.encoder.image_size, | |
), | |
dtype="float32", | |
), | |
"labels": datasets.Sequence(feature=datasets.Value(dtype="int32", id=None), length=-1, id=None), | |
"decoder_input_ids": datasets.Sequence(feature=datasets.Value(dtype="int32", id=None), length=-1, id=None), | |
"decoder_attention_mask": datasets.Sequence( | |
feature=datasets.Value(dtype="int32", id=None), length=-1, id=None | |
), | |
} | |
) | |
# If `block_size` is `0`, tokenization & image processing is done at the beginning | |
run_img_proc_at_beginning = training_args.block_size == 0 | |
# Used in .map() below | |
function_kwarg = preprocess_fn if run_img_proc_at_beginning else tokenization_fn | |
# `features` is used only for the final preprocessed dataset (for the performance purpose). | |
features_kwarg = features if run_img_proc_at_beginning else None | |
# Keep `image_column` if the image processing is done during training | |
remove_columns_kwarg = [x for x in column_names if x != image_column or run_img_proc_at_beginning] | |
processor_names = "tokenizer and image processor" if run_img_proc_at_beginning else "tokenizer" | |
# Store some constant | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | |
if training_args.block_size % train_batch_size > 0 or training_args.block_size % eval_batch_size > 0: | |
raise ValueError( | |
"`training_args.block_size` needs to be a multiple of the global train/eval batch size." | |
f"Got {training_args.block_size}, {train_batch_size} and {eval_batch_size} respectively instead." | |
) | |
if training_args.do_train: | |
if "train" not in dataset: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = dataset["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
# remove problematic examples | |
# (if image processing is performed at the beginning, the filtering is done during preprocessing below | |
# instead here.) | |
if not run_img_proc_at_beginning: | |
train_dataset = train_dataset.filter(filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers) | |
train_dataset = train_dataset.map( | |
function=function_kwarg, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
# kept image paths | |
remove_columns=remove_columns_kwarg, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc=f"Running {processor_names} on train dataset", | |
fn_kwargs={"max_target_length": data_args.max_target_length}, | |
features=features_kwarg, | |
) | |
if run_img_proc_at_beginning: | |
# set format (for performance) since the dataset is ready to be used | |
train_dataset = train_dataset.with_format("numpy") | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
num_train_examples_per_epoch = steps_per_epoch * train_batch_size | |
num_epochs = int(training_args.num_train_epochs) | |
total_train_steps = steps_per_epoch * num_epochs | |
else: | |
num_train_examples_per_epoch = 0 | |
if training_args.do_eval: | |
if "validation" not in dataset: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = dataset["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
# remove problematic examples | |
# (if image processing is performed at the beginning, the filtering is done during preprocessing below | |
# instead here.) | |
if not run_img_proc_at_beginning: | |
eval_dataset = eval_dataset.filter(filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers) | |
eval_dataset = eval_dataset.map( | |
function=function_kwarg, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
# kept image paths | |
remove_columns=remove_columns_kwarg, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc=f"Running {processor_names} on validation dataset", | |
fn_kwargs={"max_target_length": data_args.val_max_target_length}, | |
features=features_kwarg, | |
) | |
if run_img_proc_at_beginning: | |
# set format (for performance) since the dataset is ready to be used | |
eval_dataset = eval_dataset.with_format("numpy") | |
num_eval_examples = len(eval_dataset) | |
eval_steps = num_eval_examples // eval_batch_size | |
if training_args.do_predict: | |
if "test" not in dataset: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_dataset = dataset["test"] | |
if data_args.max_predict_samples is not None: | |
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
# remove problematic examples | |
# (if image processing is performed at the beginning, the filtering is done during preprocessing below | |
# instead here.) | |
if not run_img_proc_at_beginning: | |
predict_dataset = predict_dataset.filter( | |
filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers | |
) | |
predict_dataset = predict_dataset.map( | |
function=function_kwarg, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
# kept image paths | |
remove_columns=remove_columns_kwarg, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc=f"Running {processor_names} on prediction dataset", | |
fn_kwargs={"max_target_length": data_args.val_max_target_length}, | |
features=features_kwarg, | |
) | |
if run_img_proc_at_beginning: | |
# set format (for performance) since the dataset is ready to be used | |
predict_dataset = predict_dataset.with_format("numpy") | |
num_test_examples = len(predict_dataset) | |
test_steps = num_test_examples // eval_batch_size | |
def blockwise_data_loader( | |
rng: jax.random.PRNGKey, | |
ds: Dataset, | |
block_size: int, | |
batch_size: int, | |
shuffle: bool = False, | |
keep_in_memory: bool = False, | |
split: str = "", | |
): | |
""" | |
Wrap the simple `data_loader` in a block-wise way if `block_size` > 0, else it's the same as `data_loader`. | |
If `block_size` > 0, it requires `ds` to have a column that gives image paths in order to perform image | |
processing (with the column name being specified by `image_column`). The tokenization should be done before | |
training in this case. | |
""" | |
# We use `numpy.ndarray` to interact with `datasets.Dataset`, since using `jax.numpy.array` to index into a | |
# dataset is significantly slow. Using JAX array at the 1st place is only to keep JAX's PRNGs generation | |
# mechanism, which works differently from NumPy/SciPy. | |
if shuffle: | |
indices = jax.random.permutation(rng, len(ds)) | |
indices = np.asarray(indices) | |
else: | |
indices = np.arange(len(ds)) | |
_block_size = len(ds) if not block_size else block_size | |
steps_per_block = _block_size // batch_size | |
num_examples = len(ds) | |
steps = num_examples // batch_size | |
num_splits = steps // steps_per_block + int(steps % steps_per_block > 0) | |
for idx in range(num_splits): | |
if not block_size: | |
_ds = ds | |
else: | |
start_idx = block_size * idx | |
end_idx = block_size * (idx + 1) | |
selected_indices = indices[start_idx:end_idx] | |
_ds = ds.select(selected_indices) | |
_ds = _ds.map( | |
image_processing_fn, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=[image_column], | |
load_from_cache_file=not data_args.overwrite_cache, | |
features=features, | |
keep_in_memory=keep_in_memory, | |
# The images are already checked either in `.filter()` or in `preprocess_fn()` | |
fn_kwargs={"check_image": False}, | |
desc=f"Running image processing on {split} dataset".replace(" ", " "), | |
) | |
_ds = _ds.with_format("numpy") | |
# No need to shuffle here | |
loader = data_loader(rng, _ds, batch_size=batch_size, shuffle=False) | |
for batch in loader: | |
yield batch | |
# Metric | |
metric = evaluate.load("rouge") | |
def postprocess_text(preds, labels): | |
preds = [pred.strip() for pred in preds] | |
labels = [label.strip() for label in labels] | |
# rougeLSum expects newline after each sentence | |
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] | |
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] | |
return preds, labels | |
def compute_metrics(preds, labels): | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
# Some simple post-processing | |
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) | |
# Extract a few results from ROUGE | |
result = {key: value.mid.fmeasure * 100 for key, value in result.items()} | |
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] | |
result["gen_len"] = np.mean(prediction_lens) | |
result = {k: round(v, 6) for k, v in result.items()} | |
return result, decoded_preds, decoded_labels | |
# Enable tensorboard only on the master node | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
else: | |
logger.warning( | |
"Unable to display metrics through TensorBoard because the package is not installed: " | |
"Please run pip install tensorboard to enable." | |
) | |
# Initialize our training | |
rng = jax.random.PRNGKey(training_args.seed) | |
rng, dropout_rng = jax.random.split(rng) | |
# Create learning rate schedule | |
linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
num_train_examples_per_epoch, | |
train_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
# find out all LayerNorm parameters | |
layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
layer_norm_named_params = { | |
layer[-2:] | |
for layer_norm_name in layer_norm_candidates | |
for layer in flat_params.keys() | |
if layer_norm_name in "".join(layer).lower() | |
} | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
# create adam optimizer | |
adamw = optax.adamw( | |
learning_rate=linear_decay_lr_schedule_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
mask=decay_mask_fn, | |
) | |
# Setup train state | |
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) | |
# label smoothed cross entropy | |
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0): | |
""" | |
The label smoothing implementation is adapted from Flax's official example: | |
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 | |
""" | |
vocab_size = logits.shape[-1] | |
confidence = 1.0 - label_smoothing_factor | |
low_confidence = (1.0 - confidence) / (vocab_size - 1) | |
normalizing_constant = -( | |
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) | |
) | |
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) | |
loss = optax.softmax_cross_entropy(logits, soft_labels) | |
loss = loss - normalizing_constant | |
# ignore padded tokens from loss | |
loss = loss * padding_mask | |
loss = loss.sum() | |
num_labels = padding_mask.sum() | |
return loss, num_labels | |
# Define gradient update step fn | |
def train_step(state, batch, label_smoothing_factor=0.0): | |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
def compute_loss(params): | |
labels = batch.pop("labels") | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) | |
return loss, num_labels | |
grad_fn = jax.value_and_grad(compute_loss, has_aux=True) | |
(loss, num_labels), grad = grad_fn(state.params) | |
num_labels = jax.lax.psum(num_labels, "batch") | |
# true loss = total loss / total samples | |
loss = jax.lax.psum(loss, "batch") | |
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) | |
# true grad = total grad / total samples | |
grad = jax.lax.psum(grad, "batch") | |
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) | |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) | |
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} | |
return new_state, metrics | |
# Define eval fn | |
def eval_step(params, batch, label_smoothing_factor=0.0): | |
labels = batch.pop("labels") | |
logits = model(**batch, params=params, train=False)[0] | |
loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) | |
num_labels = jax.lax.psum(num_labels, "batch") | |
# true loss = total loss / total samples | |
loss = jax.lax.psum(loss, "batch") | |
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) | |
metrics = {"loss": loss} | |
return metrics | |
# Define generation function | |
max_length = ( | |
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length | |
) | |
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def generate_step(params, batch): | |
model.params = params | |
output_ids = model.generate(batch["pixel_values"], **gen_kwargs) | |
return output_ids.sequences | |
# Create parallel version of the train and eval step | |
p_train_step = jax.pmap( | |
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) | |
) | |
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") | |
p_generate_step = jax.pmap(generate_step, "batch") | |
# Replicate the train state on each device | |
state = state.replicate() | |
if training_args.do_train: | |
logger.info("***** Running training *****") | |
logger.info(f" Num train examples = {num_train_examples_per_epoch}") | |
logger.info(f" Num Epochs = {num_epochs}") | |
logger.info(f" Instantaneous train batch size per device = {training_args.per_device_train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") | |
logger.info(f" Optimization steps per epoch = {steps_per_epoch}") | |
logger.info(f" Total optimization steps = {total_train_steps}") | |
if training_args.do_eval: | |
logger.info(f" Num evaluation examples = {num_eval_examples}") | |
logger.info(f" Instantaneous evaluation batch size per device = {training_args.per_device_eval_batch_size}") | |
logger.info(f" Total evaluation batch size (w. parallel & distributed) = {eval_batch_size}") | |
logger.info(f" Evaluation steps = {eval_steps}") | |
if training_args.do_predict: | |
logger.info(f" Num test examples = {num_test_examples}") | |
logger.info(f" Instantaneous test batch size per device = {training_args.per_device_eval_batch_size}") | |
logger.info(f" Total test batch size (w. parallel & distributed) = {eval_batch_size}") | |
logger.info(f" Test steps = {test_steps}") | |
# create output directory | |
if not os.path.isdir(os.path.join(training_args.output_dir)): | |
os.makedirs(os.path.join(training_args.output_dir), exist_ok=True) | |
def save_ckpt(ckpt_dir: str, commit_msg: str = ""): | |
"""save checkpoints and push to Hugging Face Hub if specified""" | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) | |
model.save_pretrained(os.path.join(training_args.output_dir, ckpt_dir), params=params) | |
tokenizer.save_pretrained(os.path.join(training_args.output_dir, ckpt_dir)) | |
if training_args.push_to_hub: | |
repo.push_to_hub(commit_message=commit_msg, blocking=False) | |
def evaluation_loop( | |
rng: jax.random.PRNGKey, | |
dataset: Dataset, | |
metric_key_prefix: str = "eval", | |
ckpt_dir: str = "", | |
is_prediction=False, | |
): | |
logger.info(f"*** {'Predict' if is_prediction else 'Evaluate'} ***") | |
metrics = [] | |
preds = [] | |
labels = [] | |
batches = blockwise_data_loader( | |
rng, | |
dataset, | |
block_size=training_args.block_size, | |
batch_size=eval_batch_size, | |
keep_in_memory=False, | |
shuffle=False, | |
split="prediction" if is_prediction else "validation", | |
) | |
steps = len(dataset) // eval_batch_size | |
for _ in tqdm( | |
range(steps), desc=f"{'Predicting' if is_prediction else 'Evaluating'}...", position=2, leave=False | |
): | |
# Model forward | |
batch = next(batches) | |
_labels = batch.get("labels", None) | |
if not is_prediction and _labels is None: | |
raise ValueError("Evaluation requires the validation dataset to have `labels`") | |
if _labels is not None: | |
_metrics = p_eval_step(state.params, batch) | |
metrics.append(_metrics) | |
# generation | |
if data_args.predict_with_generate: | |
generated_ids = p_generate_step(state.params, batch) | |
preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
if _labels is not None: | |
labels.extend(jax.device_get(_labels.reshape(-1, _labels.shape[-1]))) | |
if metrics: | |
# normalize metrics | |
metrics = get_metrics(metrics) | |
metrics = jax.tree_util.tree_map(jnp.mean, metrics) | |
# compute ROUGE metrics | |
generations = [] | |
rouge_desc = "" | |
if data_args.predict_with_generate: | |
if labels: | |
rouge_metrics, decoded_preds, decoded_labels = compute_metrics(preds, labels) | |
metrics.update(rouge_metrics) | |
rouge_desc = " ".join( | |
[ | |
f"{'Predict' if is_prediction else 'Eval'} {key}: {value} |" | |
for key, value in rouge_metrics.items() | |
] | |
) | |
for pred, label in zip(decoded_preds, decoded_labels): | |
pred = pred.replace("\n", " ") | |
label = label.replace("\n", " ") | |
generations.append({"label": label, "pred": pred}) | |
else: | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
# Some simple post-processing | |
decoded_preds = [pred.strip() for pred in decoded_preds] | |
# rougeLSum expects newline after each sentence | |
decoded_preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in decoded_preds] | |
for pred in decoded_preds: | |
pred = pred.replace("\n", " ") | |
generations.append({"pred": pred}) | |
if metrics: | |
# Print metrics and update progress bar | |
desc = f"{'Predict' if is_prediction else 'Eval'} Loss: {metrics['loss']} | {rouge_desc})" | |
if training_args.do_train and not is_prediction: | |
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Step: {cur_step} | " + desc | |
epochs.write(desc) | |
epochs.desc = desc | |
logger.info(desc) | |
if jax.process_index() == 0: | |
if not os.path.isdir(os.path.join(training_args.output_dir, ckpt_dir)): | |
os.makedirs(os.path.join(training_args.output_dir, ckpt_dir), exist_ok=True) | |
if metrics: | |
# Save metrics (only for the evaluation/prediction being done along with training) | |
if has_tensorboard and training_args.do_train: | |
write_metric( | |
summary_writer, metrics, train_time=None, step=cur_step, metric_key_prefix=metric_key_prefix | |
) | |
# save final metrics in json | |
metrics = { | |
f"{metric_key_prefix}_{metric_name}": round(value.item(), 6) | |
for metric_name, value in metrics.items() | |
} | |
_path = os.path.join(training_args.output_dir, ckpt_dir, f"{metric_key_prefix}_results.json") | |
with open(_path, "w") as f: | |
json.dump(metrics, f, indent=4, sort_keys=True) | |
# Update report | |
with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: | |
fp.write(desc + "\n") | |
# Save generations | |
if generations: | |
output_file = os.path.join(training_args.output_dir, ckpt_dir, f"{metric_key_prefix}_generation.json") | |
with open(output_file, "w", encoding="UTF-8") as fp: | |
json.dump(generations, fp, ensure_ascii=False, indent=4) | |
def evaluate(rng: jax.random.PRNGKey, dataset: Dataset, ckpt_dir: str = ""): | |
evaluation_loop(rng, dataset, metric_key_prefix="eval", ckpt_dir=ckpt_dir) | |
def predict(rng: jax.random.PRNGKey, dataset: Dataset): | |
evaluation_loop(rng, dataset, metric_key_prefix="test", is_prediction=True) | |
input_rng = None | |
if training_args.do_train: | |
cur_step = 0 | |
train_time = 0 | |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
train_metrics = [] | |
train_batches = blockwise_data_loader( | |
input_rng, | |
train_dataset, | |
block_size=training_args.block_size, | |
batch_size=train_batch_size, | |
keep_in_memory=True, | |
shuffle=True, | |
split="train", | |
) | |
# train | |
for batch_idx, _ in enumerate(tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False)): | |
cur_step += 1 | |
batch = next(train_batches) | |
batch_start = time.time() | |
state, train_metric = p_train_step(state, batch) | |
train_metrics.append(train_metric) | |
train_time += time.time() - batch_start | |
time_per_step = train_time / cur_step | |
# log and save info | |
if training_args.logging_steps > 0 and cur_step % training_args.logging_steps == 0: | |
_train_metric = unreplicate(train_metric) | |
desc = ( | |
f"Epoch... ({epoch + 1}/{num_epochs} | Step: {cur_step} | Loss: {_train_metric['loss']} |" | |
f" Learning Rate: {_train_metric['learning_rate']} | Time per step: {time_per_step})" | |
) | |
epochs.desc = desc | |
epochs.write(desc) | |
logger.info(desc) | |
with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: | |
fp.write(desc + "\n") | |
# Save metrics | |
if has_tensorboard and jax.process_index() == 0: | |
write_metric( | |
summary_writer, | |
train_metrics, | |
train_time=train_time, | |
step=cur_step, | |
metric_key_prefix="train", | |
) | |
# ======================== Evaluating (inside an epoch) ============================== | |
if ( | |
training_args.do_eval | |
and (training_args.eval_steps is not None and training_args.eval_steps > 0) | |
and cur_step % training_args.eval_steps == 0 | |
): | |
ckpt_dir = f"ckpt_epoch_{epoch + 1}_step_{cur_step}" | |
commit_msg = f"Saving weights and logs of epoch {epoch + 1} - step {cur_step}" | |
evaluate(input_rng, eval_dataset, ckpt_dir) | |
save_ckpt(ckpt_dir=ckpt_dir, commit_msg=commit_msg) | |
# ======================== Epoch End ============================== | |
# log and save info | |
if training_args.logging_steps <= 0: | |
logger.info(desc) | |
with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: | |
fp.write(desc + "\n") | |
# Save metrics | |
if has_tensorboard and jax.process_index() == 0: | |
write_metric( | |
summary_writer, train_metrics, train_time=train_time, step=cur_step, metric_key_prefix="train" | |
) | |
# ======================== Evaluating (after each epoch) ============================== | |
if training_args.do_eval and (training_args.eval_steps is None or training_args.eval_steps <= 0): | |
ckpt_dir = f"ckpt_epoch_{epoch + 1}_step_{cur_step}" | |
commit_msg = f"Saving weights and logs of epoch {epoch + 1} - step {cur_step}" | |
evaluate(input_rng, eval_dataset, ckpt_dir) | |
save_ckpt(ckpt_dir=ckpt_dir, commit_msg=commit_msg) | |
# ======================== Evaluating | Predicting ============================== | |
# Create sampling rng | |
if input_rng is None: | |
rng, input_rng = jax.random.split(rng) | |
# run evaluation without training | |
if training_args.do_eval and not training_args.do_train: | |
evaluate(input_rng, eval_dataset) | |
# run prediction after (or without) training | |
if training_args.do_predict: | |
predict(input_rng, predict_dataset) | |
if __name__ == "__main__": | |
main() | |