Spaces:
Runtime error
Runtime error
import os | |
from dataclasses import replace | |
import jax | |
import wandb | |
from bigbird_flax import Args, DataCollator, FlaxBigBirdForNaturalQuestions, Trainer, build_tx, train_step, val_step | |
from datasets import load_dataset | |
from flax import jax_utils | |
from transformers import BigBirdTokenizerFast | |
if __name__ == "__main__": | |
print("#################### AVAILABLE DEVICES ####################") | |
print(jax.devices()) | |
print("###########################################################") | |
# setup for wandb sweep | |
args = Args() | |
logger = wandb.init(project="bigbird-natural-questions", config=args.__dict__) | |
wandb_args = dict(logger.config) | |
del wandb_args["batch_size"] | |
args = replace(args, **wandb_args) | |
base_dir = args.base_dir + "-" + wandb.run.id | |
args = replace(args, base_dir=base_dir) | |
print(args) | |
tr_dataset = load_dataset("json", data_files=args.tr_data_path)["train"] | |
val_dataset = load_dataset("json", data_files=args.val_data_path)["train"] | |
# drop extra batch for now | |
indices = range(len(tr_dataset) - len(tr_dataset) % args.batch_size) | |
tr_dataset = tr_dataset.shuffle().select(indices) | |
indices = range(len(val_dataset) - len(val_dataset) % args.batch_size) | |
val_dataset = val_dataset.shuffle().select(indices) | |
if os.environ.get("TRAIN_ON_SMALL", "false") == "true": | |
tr_dataset = tr_dataset.shuffle().select(range(80000)) | |
val_dataset = val_dataset.shuffle().select(range(8000)) | |
print(tr_dataset) | |
print(val_dataset) | |
model = FlaxBigBirdForNaturalQuestions.from_pretrained( | |
args.model_id, block_size=args.block_size, num_random_blocks=args.num_random_blocks | |
) | |
tokenizer = BigBirdTokenizerFast.from_pretrained(args.model_id) | |
data_collator = DataCollator(pad_id=tokenizer.pad_token_id, max_length=4096) | |
tx_args = { | |
"lr": args.lr, | |
"init_lr": args.init_lr, | |
"warmup_steps": args.warmup_steps, | |
"num_train_steps": args.max_epochs * (len(tr_dataset) // args.batch_size), | |
"weight_decay": args.weight_decay, | |
} | |
tx, lr = build_tx(**tx_args) | |
trainer = Trainer( | |
args=args, | |
data_collator=data_collator, | |
model_save_fn=model.save_pretrained, | |
train_step_fn=train_step, | |
val_step_fn=val_step, | |
logger=logger, | |
scheduler_fn=lr, | |
) | |
ckpt_dir = None | |
state = trainer.create_state(model, tx, num_train_steps=tx_args["num_train_steps"], ckpt_dir=ckpt_dir) | |
try: | |
trainer.train(state, tr_dataset, val_dataset) | |
except KeyboardInterrupt: | |
print("Oooops; TRAINING STOPPED UNFORTUNATELY") | |
print("SAVING WEIGHTS IN `final-weights`") | |
params = jax_utils.unreplicate(state.params) | |
model.save_pretrained(os.path.join(args.base_dir, "final-weights"), params=params) | |