Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Fine-pruning Masked BERT on sequence classification on GLUE.""" | |
import argparse | |
import glob | |
import json | |
import logging | |
import os | |
import random | |
import numpy as np | |
import torch | |
from emmental import MaskedBertConfig, MaskedBertForSequenceClassification | |
from torch import nn | |
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm, trange | |
from transformers import ( | |
WEIGHTS_NAME, | |
AdamW, | |
BertConfig, | |
BertForSequenceClassification, | |
BertTokenizer, | |
get_linear_schedule_with_warmup, | |
) | |
from transformers import glue_compute_metrics as compute_metrics | |
from transformers import glue_convert_examples_to_features as convert_examples_to_features | |
from transformers import glue_output_modes as output_modes | |
from transformers import glue_processors as processors | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
except ImportError: | |
from tensorboardX import SummaryWriter | |
logger = logging.getLogger(__name__) | |
MODEL_CLASSES = { | |
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer), | |
"masked_bert": (MaskedBertConfig, MaskedBertForSequenceClassification, BertTokenizer), | |
} | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def schedule_threshold( | |
step: int, | |
total_step: int, | |
warmup_steps: int, | |
initial_threshold: float, | |
final_threshold: float, | |
initial_warmup: int, | |
final_warmup: int, | |
final_lambda: float, | |
): | |
if step <= initial_warmup * warmup_steps: | |
threshold = initial_threshold | |
elif step > (total_step - final_warmup * warmup_steps): | |
threshold = final_threshold | |
else: | |
spars_warmup_steps = initial_warmup * warmup_steps | |
spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps | |
mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps) | |
threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff**3) | |
regu_lambda = final_lambda * threshold / final_threshold | |
return threshold, regu_lambda | |
def regularization(model: nn.Module, mode: str): | |
regu, counter = 0, 0 | |
for name, param in model.named_parameters(): | |
if "mask_scores" in name: | |
if mode == "l1": | |
regu += torch.norm(torch.sigmoid(param), p=1) / param.numel() | |
elif mode == "l0": | |
regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel() | |
else: | |
ValueError("Don't know this mode.") | |
counter += 1 | |
return regu / counter | |
def train(args, train_dataset, model, tokenizer, teacher=None): | |
"""Train the model""" | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter(log_dir=args.output_dir) | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad], | |
"lr": args.mask_scores_learning_rate, | |
}, | |
{ | |
"params": [ | |
p | |
for n, p in model.named_parameters() | |
if "mask_score" not in n and p.requires_grad and not any(nd in n for nd in no_decay) | |
], | |
"lr": args.learning_rate, | |
"weight_decay": args.weight_decay, | |
}, | |
{ | |
"params": [ | |
p | |
for n, p in model.named_parameters() | |
if "mask_score" not in n and p.requires_grad and any(nd in n for nd in no_decay) | |
], | |
"lr": args.learning_rate, | |
"weight_decay": 0.0, | |
}, | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
) | |
# Check if saved optimizer or scheduler states exist | |
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( | |
os.path.join(args.model_name_or_path, "scheduler.pt") | |
): | |
# Load in optimizer and scheduler states | |
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) | |
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = nn.parallel.DistributedDataParallel( | |
model, | |
device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True, | |
) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info( | |
" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size | |
* args.gradient_accumulation_steps | |
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
# Distillation | |
if teacher is not None: | |
logger.info(" Training with distillation") | |
global_step = 0 | |
# Global TopK | |
if args.global_topk: | |
threshold_mem = None | |
epochs_trained = 0 | |
steps_trained_in_current_epoch = 0 | |
# Check if continuing training from a checkpoint | |
if os.path.exists(args.model_name_or_path): | |
# set global_step to global_step of last saved checkpoint from model path | |
try: | |
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) | |
except ValueError: | |
global_step = 0 | |
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) | |
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) | |
logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
logger.info(" Continuing training from epoch %d", epochs_trained) | |
logger.info(" Continuing training from global step %d", global_step) | |
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) | |
tr_loss, logging_loss = 0.0, 0.0 | |
model.zero_grad() | |
train_iterator = trange( | |
epochs_trained, | |
int(args.num_train_epochs), | |
desc="Epoch", | |
disable=args.local_rank not in [-1, 0], | |
) | |
set_seed(args) # Added here for reproducibility | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
# Skip past any already trained steps if resuming training | |
if steps_trained_in_current_epoch > 0: | |
steps_trained_in_current_epoch -= 1 | |
continue | |
model.train() | |
batch = tuple(t.to(args.device) for t in batch) | |
threshold, regu_lambda = schedule_threshold( | |
step=global_step, | |
total_step=t_total, | |
warmup_steps=args.warmup_steps, | |
final_threshold=args.final_threshold, | |
initial_threshold=args.initial_threshold, | |
final_warmup=args.final_warmup, | |
initial_warmup=args.initial_warmup, | |
final_lambda=args.final_lambda, | |
) | |
# Global TopK | |
if args.global_topk: | |
if threshold == 1.0: | |
threshold = -1e2 # Or an indefinitely low quantity | |
else: | |
if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0): | |
# Sort all the values to get the global topK | |
concat = torch.cat( | |
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] | |
) | |
n = concat.numel() | |
kth = max(n - (int(n * threshold) + 1), 1) | |
threshold_mem = concat.kthvalue(kth).values.item() | |
threshold = threshold_mem | |
else: | |
threshold = threshold_mem | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None | |
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids | |
if "masked" in args.model_type: | |
inputs["threshold"] = threshold | |
outputs = model(**inputs) | |
loss, logits_stu = outputs # model outputs are always tuple in transformers (see doc) | |
# Distillation loss | |
if teacher is not None: | |
if "token_type_ids" not in inputs: | |
inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2] | |
with torch.no_grad(): | |
(logits_tea,) = teacher( | |
input_ids=inputs["input_ids"], | |
token_type_ids=inputs["token_type_ids"], | |
attention_mask=inputs["attention_mask"], | |
) | |
loss_logits = nn.functional.kl_div( | |
input=nn.functional.log_softmax(logits_stu / args.temperature, dim=-1), | |
target=nn.functional.softmax(logits_tea / args.temperature, dim=-1), | |
reduction="batchmean", | |
) * (args.temperature**2) | |
loss = args.alpha_distil * loss_logits + args.alpha_ce * loss | |
# Regularization | |
if args.regularization is not None: | |
regu_ = regularization(model=model, mode=args.regularization) | |
loss = loss + regu_lambda * regu_ | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0 or ( | |
# last step in epoch but step is always smaller than gradient_accumulation_steps | |
len(epoch_iterator) <= args.gradient_accumulation_steps | |
and (step + 1) == len(epoch_iterator) | |
): | |
if args.fp16: | |
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
tb_writer.add_scalar("threshold", threshold, global_step) | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue | |
tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step) | |
tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step) | |
tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step) | |
tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step) | |
tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step) | |
tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step) | |
if args.regularization is not None and "mask_scores" in name: | |
if args.regularization == "l1": | |
perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel() | |
elif args.regularization == "l0": | |
perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel() | |
tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
logs = {} | |
if ( | |
args.local_rank == -1 and args.evaluate_during_training | |
): # Only evaluate when single GPU otherwise metrics may not average well | |
results = evaluate(args, model, tokenizer) | |
for key, value in results.items(): | |
eval_key = "eval_{}".format(key) | |
logs[eval_key] = value | |
loss_scalar = (tr_loss - logging_loss) / args.logging_steps | |
learning_rate_scalar = scheduler.get_lr() | |
logs["learning_rate"] = learning_rate_scalar[0] | |
if len(learning_rate_scalar) > 1: | |
for idx, lr in enumerate(learning_rate_scalar[1:]): | |
logs[f"learning_rate/{idx+1}"] = lr | |
logs["loss"] = loss_scalar | |
if teacher is not None: | |
logs["loss/distil"] = loss_logits.item() | |
if args.regularization is not None: | |
logs["loss/regularization"] = regu_.item() | |
if (teacher is not None) or (args.regularization is not None): | |
if (teacher is not None) and (args.regularization is not None): | |
logs["loss/instant_ce"] = ( | |
loss.item() | |
- regu_lambda * logs["loss/regularization"] | |
- args.alpha_distil * logs["loss/distil"] | |
) / args.alpha_ce | |
elif teacher is not None: | |
logs["loss/instant_ce"] = ( | |
loss.item() - args.alpha_distil * logs["loss/distil"] | |
) / args.alpha_ce | |
else: | |
logs["loss/instant_ce"] = loss.item() - regu_lambda * logs["loss/regularization"] | |
logging_loss = tr_loss | |
for key, value in logs.items(): | |
tb_writer.add_scalar(key, value, global_step) | |
print(json.dumps({**logs, **{"step": global_step}})) | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
# Save model checkpoint | |
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) | |
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) | |
logger.info("Saving optimizer and scheduler states to %s", output_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step, tr_loss / global_step | |
def evaluate(args, model, tokenizer, prefix=""): | |
# Loop to handle MNLI double evaluation (matched, mis-matched) | |
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) | |
eval_outputs_dirs = (args.output_dir, args.output_dir + "/MM") if args.task_name == "mnli" else (args.output_dir,) | |
results = {} | |
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): | |
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) | |
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(eval_dataset) | |
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
# multi-gpu eval | |
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): | |
model = nn.DataParallel(model) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
preds = None | |
out_label_ids = None | |
# Global TopK | |
if args.global_topk: | |
threshold_mem = None | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None | |
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids | |
if "masked" in args.model_type: | |
inputs["threshold"] = args.final_threshold | |
if args.global_topk: | |
if threshold_mem is None: | |
concat = torch.cat( | |
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] | |
) | |
n = concat.numel() | |
kth = max(n - (int(n * args.final_threshold) + 1), 1) | |
threshold_mem = concat.kthvalue(kth).values.item() | |
inputs["threshold"] = threshold_mem | |
outputs = model(**inputs) | |
tmp_eval_loss, logits = outputs[:2] | |
eval_loss += tmp_eval_loss.mean().item() | |
nb_eval_steps += 1 | |
if preds is None: | |
preds = logits.detach().cpu().numpy() | |
out_label_ids = inputs["labels"].detach().cpu().numpy() | |
else: | |
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) | |
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) | |
eval_loss = eval_loss / nb_eval_steps | |
if args.output_mode == "classification": | |
from scipy.special import softmax | |
probs = softmax(preds, axis=-1) | |
entropy = np.exp((-probs * np.log(probs)).sum(axis=-1).mean()) | |
preds = np.argmax(preds, axis=1) | |
elif args.output_mode == "regression": | |
preds = np.squeeze(preds) | |
result = compute_metrics(eval_task, preds, out_label_ids) | |
results.update(result) | |
if entropy is not None: | |
result["eval_avg_entropy"] = entropy | |
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results {} *****".format(prefix)) | |
for key in sorted(result.keys()): | |
logger.info(" %s = %s", key, str(result[key])) | |
writer.write("%s = %s\n" % (key, str(result[key]))) | |
return results | |
def load_and_cache_examples(args, task, tokenizer, evaluate=False): | |
if args.local_rank not in [-1, 0] and not evaluate: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
processor = processors[task]() | |
output_mode = output_modes[task] | |
# Load data features from cache or dataset file | |
cached_features_file = os.path.join( | |
args.data_dir, | |
"cached_{}_{}_{}_{}".format( | |
"dev" if evaluate else "train", | |
list(filter(None, args.model_name_or_path.split("/"))).pop(), | |
str(args.max_seq_length), | |
str(task), | |
), | |
) | |
if os.path.exists(cached_features_file) and not args.overwrite_cache: | |
logger.info("Loading features from cached file %s", cached_features_file) | |
features = torch.load(cached_features_file) | |
else: | |
logger.info("Creating features from dataset file at %s", args.data_dir) | |
label_list = processor.get_labels() | |
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: | |
# HACK(label indices are swapped in RoBERTa pretrained model) | |
label_list[1], label_list[2] = label_list[2], label_list[1] | |
examples = ( | |
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) | |
) | |
features = convert_examples_to_features( | |
examples, | |
tokenizer, | |
max_length=args.max_seq_length, | |
label_list=label_list, | |
output_mode=output_mode, | |
) | |
if args.local_rank in [-1, 0]: | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(features, cached_features_file) | |
if args.local_rank == 0 and not evaluate: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
# Convert to Tensors and build dataset | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) | |
if output_mode == "classification": | |
all_labels = torch.tensor([f.label for f in features], dtype=torch.long) | |
elif output_mode == "regression": | |
all_labels = torch.tensor([f.label for f in features], dtype=torch.float) | |
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--data_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The input data dir. Should contain the .tsv files (or other data files) for the task.", | |
) | |
parser.add_argument( | |
"--model_type", | |
default=None, | |
type=str, | |
required=True, | |
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models", | |
) | |
parser.add_argument( | |
"--task_name", | |
default=None, | |
type=str, | |
required=True, | |
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--config_name", | |
default="", | |
type=str, | |
help="Pretrained config name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
default="", | |
type=str, | |
help="Where do you want to store the pre-trained models downloaded from huggingface.co", | |
) | |
parser.add_argument( | |
"--max_seq_length", | |
default=128, | |
type=int, | |
help=( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
), | |
) | |
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
parser.add_argument( | |
"--evaluate_during_training", | |
action="store_true", | |
help="Run evaluation during training at each logging step.", | |
) | |
parser.add_argument( | |
"--do_lower_case", | |
action="store_true", | |
help="Set this flag if you are using an uncased model.", | |
) | |
parser.add_argument( | |
"--per_gpu_train_batch_size", | |
default=8, | |
type=int, | |
help="Batch size per GPU/CPU for training.", | |
) | |
parser.add_argument( | |
"--per_gpu_eval_batch_size", | |
default=8, | |
type=int, | |
help="Batch size per GPU/CPU for evaluation.", | |
) | |
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
# Pruning parameters | |
parser.add_argument( | |
"--mask_scores_learning_rate", | |
default=1e-2, | |
type=float, | |
help="The Adam initial learning rate of the mask scores.", | |
) | |
parser.add_argument( | |
"--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)." | |
) | |
parser.add_argument( | |
"--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)." | |
) | |
parser.add_argument( | |
"--initial_warmup", | |
default=1, | |
type=int, | |
help=( | |
"Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays" | |
"at its `initial_threshold` value (sparsity schedule)." | |
), | |
) | |
parser.add_argument( | |
"--final_warmup", | |
default=2, | |
type=int, | |
help=( | |
"Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays" | |
"at its final_threshold value (sparsity schedule)." | |
), | |
) | |
parser.add_argument( | |
"--pruning_method", | |
default="topK", | |
type=str, | |
help=( | |
"Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," | |
" sigmoied_threshold = Soft movement pruning)." | |
), | |
) | |
parser.add_argument( | |
"--mask_init", | |
default="constant", | |
type=str, | |
help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.", | |
) | |
parser.add_argument( | |
"--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method." | |
) | |
parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.") | |
parser.add_argument( | |
"--final_lambda", | |
default=0.0, | |
type=float, | |
help="Regularization intensity (used in conjunction with `regularization`.", | |
) | |
parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.") | |
parser.add_argument( | |
"--global_topk_frequency_compute", | |
default=25, | |
type=int, | |
help="Frequency at which we compute the TopK global threshold.", | |
) | |
# Distillation parameters (optional) | |
parser.add_argument( | |
"--teacher_type", | |
default=None, | |
type=str, | |
help=( | |
"Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" | |
" distillation." | |
), | |
) | |
parser.add_argument( | |
"--teacher_name_or_path", | |
default=None, | |
type=str, | |
help="Path to the already fine-tuned teacher model. Only for distillation.", | |
) | |
parser.add_argument( | |
"--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation." | |
) | |
parser.add_argument( | |
"--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." | |
) | |
parser.add_argument( | |
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--num_train_epochs", | |
default=3.0, | |
type=float, | |
help="Total number of training epochs to perform.", | |
) | |
parser.add_argument( | |
"--max_steps", | |
default=-1, | |
type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
) | |
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") | |
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") | |
parser.add_argument( | |
"--eval_all_checkpoints", | |
action="store_true", | |
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
) | |
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
parser.add_argument( | |
"--overwrite_output_dir", | |
action="store_true", | |
help="Overwrite the content of the output directory", | |
) | |
parser.add_argument( | |
"--overwrite_cache", | |
action="store_true", | |
help="Overwrite the cached training and evaluation sets", | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help=( | |
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html" | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
args = parser.parse_args() | |
# Regularization | |
if args.regularization == "null": | |
args.regularization = None | |
if ( | |
os.path.exists(args.output_dir) | |
and os.listdir(args.output_dir) | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to" | |
" overcome." | |
) | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend="nccl") | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, | |
device, | |
args.n_gpu, | |
bool(args.local_rank != -1), | |
args.fp16, | |
) | |
# Set seed | |
set_seed(args) | |
# Prepare GLUE task | |
args.task_name = args.task_name.lower() | |
if args.task_name not in processors: | |
raise ValueError("Task not found: %s" % (args.task_name)) | |
processor = processors[args.task_name]() | |
args.output_mode = output_modes[args.task_name] | |
label_list = processor.get_labels() | |
num_labels = len(label_list) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
args.model_type = args.model_type.lower() | |
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
config = config_class.from_pretrained( | |
args.config_name if args.config_name else args.model_name_or_path, | |
num_labels=num_labels, | |
finetuning_task=args.task_name, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
pruning_method=args.pruning_method, | |
mask_init=args.mask_init, | |
mask_scale=args.mask_scale, | |
) | |
tokenizer = tokenizer_class.from_pretrained( | |
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
do_lower_case=args.do_lower_case, | |
) | |
model = model_class.from_pretrained( | |
args.model_name_or_path, | |
from_tf=bool(".ckpt" in args.model_name_or_path), | |
config=config, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
if args.teacher_type is not None: | |
assert args.teacher_name_or_path is not None | |
assert args.alpha_distil > 0.0 | |
assert args.alpha_distil + args.alpha_ce > 0.0 | |
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] | |
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path) | |
teacher = teacher_model_class.from_pretrained( | |
args.teacher_name_or_path, | |
from_tf=False, | |
config=teacher_config, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
teacher.to(args.device) | |
else: | |
teacher = None | |
if args.local_rank == 0: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
model.to(args.device) | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) | |
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() | |
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(args.output_dir) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = model_class.from_pretrained(args.output_dir) | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
model.to(args.device) | |
# Evaluation | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
checkpoints = [args.output_dir] | |
if args.eval_all_checkpoints: | |
checkpoints = [ | |
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
] | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
for checkpoint in checkpoints: | |
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" | |
model = model_class.from_pretrained(checkpoint) | |
model.to(args.device) | |
result = evaluate(args, model, tokenizer, prefix=prefix) | |
result = {k + "_{}".format(global_step): v for k, v in result.items()} | |
results.update(result) | |
return results | |
if __name__ == "__main__": | |
main() | |