Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Fine-pruning Masked BERT for question-answering on SQuAD.""" | |
import argparse | |
import glob | |
import logging | |
import os | |
import random | |
import timeit | |
import numpy as np | |
import torch | |
from emmental import MaskedBertConfig, MaskedBertForQuestionAnswering | |
from torch import nn | |
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm, trange | |
from transformers import ( | |
WEIGHTS_NAME, | |
AdamW, | |
BertConfig, | |
BertForQuestionAnswering, | |
BertTokenizer, | |
get_linear_schedule_with_warmup, | |
squad_convert_examples_to_features, | |
) | |
from transformers.data.metrics.squad_metrics import ( | |
compute_predictions_log_probs, | |
compute_predictions_logits, | |
squad_evaluate, | |
) | |
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
except ImportError: | |
from tensorboardX import SummaryWriter | |
logger = logging.getLogger(__name__) | |
MODEL_CLASSES = { | |
"bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), | |
"masked_bert": (MaskedBertConfig, MaskedBertForQuestionAnswering, BertTokenizer), | |
} | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def schedule_threshold( | |
step: int, | |
total_step: int, | |
warmup_steps: int, | |
initial_threshold: float, | |
final_threshold: float, | |
initial_warmup: int, | |
final_warmup: int, | |
final_lambda: float, | |
): | |
if step <= initial_warmup * warmup_steps: | |
threshold = initial_threshold | |
elif step > (total_step - final_warmup * warmup_steps): | |
threshold = final_threshold | |
else: | |
spars_warmup_steps = initial_warmup * warmup_steps | |
spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps | |
mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps) | |
threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff**3) | |
regu_lambda = final_lambda * threshold / final_threshold | |
return threshold, regu_lambda | |
def regularization(model: nn.Module, mode: str): | |
regu, counter = 0, 0 | |
for name, param in model.named_parameters(): | |
if "mask_scores" in name: | |
if mode == "l1": | |
regu += torch.norm(torch.sigmoid(param), p=1) / param.numel() | |
elif mode == "l0": | |
regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel() | |
else: | |
ValueError("Don't know this mode.") | |
counter += 1 | |
return regu / counter | |
def to_list(tensor): | |
return tensor.detach().cpu().tolist() | |
def train(args, train_dataset, model, tokenizer, teacher=None): | |
"""Train the model""" | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter(log_dir=args.output_dir) | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad], | |
"lr": args.mask_scores_learning_rate, | |
}, | |
{ | |
"params": [ | |
p | |
for n, p in model.named_parameters() | |
if "mask_score" not in n and p.requires_grad and not any(nd in n for nd in no_decay) | |
], | |
"lr": args.learning_rate, | |
"weight_decay": args.weight_decay, | |
}, | |
{ | |
"params": [ | |
p | |
for n, p in model.named_parameters() | |
if "mask_score" not in n and p.requires_grad and any(nd in n for nd in no_decay) | |
], | |
"lr": args.learning_rate, | |
"weight_decay": 0.0, | |
}, | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
) | |
# Check if saved optimizer or scheduler states exist | |
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( | |
os.path.join(args.model_name_or_path, "scheduler.pt") | |
): | |
# Load in optimizer and scheduler states | |
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) | |
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = nn.parallel.DistributedDataParallel( | |
model, | |
device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True, | |
) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info( | |
" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size | |
* args.gradient_accumulation_steps | |
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
# Distillation | |
if teacher is not None: | |
logger.info(" Training with distillation") | |
global_step = 1 | |
# Global TopK | |
if args.global_topk: | |
threshold_mem = None | |
epochs_trained = 0 | |
steps_trained_in_current_epoch = 0 | |
# Check if continuing training from a checkpoint | |
if os.path.exists(args.model_name_or_path): | |
# set global_step to global_step of last saved checkpoint from model path | |
try: | |
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] | |
global_step = int(checkpoint_suffix) | |
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) | |
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) | |
logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
logger.info(" Continuing training from epoch %d", epochs_trained) | |
logger.info(" Continuing training from global step %d", global_step) | |
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) | |
except ValueError: | |
logger.info(" Starting fine-tuning.") | |
tr_loss, logging_loss = 0.0, 0.0 | |
model.zero_grad() | |
train_iterator = trange( | |
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] | |
) | |
# Added here for reproducibility | |
set_seed(args) | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
# Skip past any already trained steps if resuming training | |
if steps_trained_in_current_epoch > 0: | |
steps_trained_in_current_epoch -= 1 | |
continue | |
model.train() | |
batch = tuple(t.to(args.device) for t in batch) | |
threshold, regu_lambda = schedule_threshold( | |
step=global_step, | |
total_step=t_total, | |
warmup_steps=args.warmup_steps, | |
final_threshold=args.final_threshold, | |
initial_threshold=args.initial_threshold, | |
final_warmup=args.final_warmup, | |
initial_warmup=args.initial_warmup, | |
final_lambda=args.final_lambda, | |
) | |
# Global TopK | |
if args.global_topk: | |
if threshold == 1.0: | |
threshold = -1e2 # Or an indefinitely low quantity | |
else: | |
if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0): | |
# Sort all the values to get the global topK | |
concat = torch.cat( | |
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] | |
) | |
n = concat.numel() | |
kth = max(n - (int(n * threshold) + 1), 1) | |
threshold_mem = concat.kthvalue(kth).values.item() | |
threshold = threshold_mem | |
else: | |
threshold = threshold_mem | |
inputs = { | |
"input_ids": batch[0], | |
"attention_mask": batch[1], | |
"token_type_ids": batch[2], | |
"start_positions": batch[3], | |
"end_positions": batch[4], | |
} | |
if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: | |
del inputs["token_type_ids"] | |
if args.model_type in ["xlnet", "xlm"]: | |
inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) | |
if args.version_2_with_negative: | |
inputs.update({"is_impossible": batch[7]}) | |
if hasattr(model, "config") and hasattr(model.config, "lang2id"): | |
inputs.update( | |
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} | |
) | |
if "masked" in args.model_type: | |
inputs["threshold"] = threshold | |
outputs = model(**inputs) | |
# model outputs are always tuple in transformers (see doc) | |
loss, start_logits_stu, end_logits_stu = outputs | |
# Distillation loss | |
if teacher is not None: | |
with torch.no_grad(): | |
start_logits_tea, end_logits_tea = teacher( | |
input_ids=inputs["input_ids"], | |
token_type_ids=inputs["token_type_ids"], | |
attention_mask=inputs["attention_mask"], | |
) | |
loss_start = nn.functional.kl_div( | |
input=nn.functional.log_softmax(start_logits_stu / args.temperature, dim=-1), | |
target=nn.functional.softmax(start_logits_tea / args.temperature, dim=-1), | |
reduction="batchmean", | |
) * (args.temperature**2) | |
loss_end = nn.functional.kl_div( | |
input=nn.functional.log_softmax(end_logits_stu / args.temperature, dim=-1), | |
target=nn.functional.softmax(end_logits_tea / args.temperature, dim=-1), | |
reduction="batchmean", | |
) * (args.temperature**2) | |
loss_logits = (loss_start + loss_end) / 2.0 | |
loss = args.alpha_distil * loss_logits + args.alpha_ce * loss | |
# Regularization | |
if args.regularization is not None: | |
regu_ = regularization(model=model, mode=args.regularization) | |
loss = loss + regu_lambda * regu_ | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
if args.fp16: | |
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
tb_writer.add_scalar("threshold", threshold, global_step) | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue | |
tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step) | |
tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step) | |
tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step) | |
tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step) | |
if "pooler" in name: | |
continue | |
tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step) | |
tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step) | |
if args.regularization is not None and "mask_scores" in name: | |
if args.regularization == "l1": | |
perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel() | |
elif args.regularization == "l0": | |
perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel() | |
tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model.zero_grad() | |
global_step += 1 | |
# Log metrics | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
# Only evaluate when single GPU otherwise metrics may not average well | |
if args.local_rank == -1 and args.evaluate_during_training: | |
results = evaluate(args, model, tokenizer) | |
for key, value in results.items(): | |
tb_writer.add_scalar("eval_{}".format(key), value, global_step) | |
learning_rate_scalar = scheduler.get_lr() | |
tb_writer.add_scalar("lr", learning_rate_scalar[0], global_step) | |
if len(learning_rate_scalar) > 1: | |
for idx, lr in enumerate(learning_rate_scalar[1:]): | |
tb_writer.add_scalar(f"lr/{idx+1}", lr, global_step) | |
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) | |
if teacher is not None: | |
tb_writer.add_scalar("loss/distil", loss_logits.item(), global_step) | |
if args.regularization is not None: | |
tb_writer.add_scalar("loss/regularization", regu_.item(), global_step) | |
if (teacher is not None) or (args.regularization is not None): | |
if (teacher is not None) and (args.regularization is not None): | |
tb_writer.add_scalar( | |
"loss/instant_ce", | |
(loss.item() - regu_lambda * regu_.item() - args.alpha_distil * loss_logits.item()) | |
/ args.alpha_ce, | |
global_step, | |
) | |
elif teacher is not None: | |
tb_writer.add_scalar( | |
"loss/instant_ce", | |
(loss.item() - args.alpha_distil * loss_logits.item()) / args.alpha_ce, | |
global_step, | |
) | |
else: | |
tb_writer.add_scalar( | |
"loss/instant_ce", loss.item() - regu_lambda * regu_.item(), global_step | |
) | |
logging_loss = tr_loss | |
# Save model checkpoint | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Take care of distributed/parallel training | |
model_to_save = model.module if hasattr(model, "module") else model | |
model_to_save.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) | |
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) | |
logger.info("Saving optimizer and scheduler states to %s", output_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step, tr_loss / global_step | |
def evaluate(args, model, tokenizer, prefix=""): | |
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) | |
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(args.output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(dataset) | |
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
# multi-gpu eval | |
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): | |
model = nn.DataParallel(model) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
all_results = [] | |
start_time = timeit.default_timer() | |
# Global TopK | |
if args.global_topk: | |
threshold_mem = None | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
inputs = { | |
"input_ids": batch[0], | |
"attention_mask": batch[1], | |
"token_type_ids": batch[2], | |
} | |
if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: | |
del inputs["token_type_ids"] | |
example_indices = batch[3] | |
# XLNet and XLM use more arguments for their predictions | |
if args.model_type in ["xlnet", "xlm"]: | |
inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) | |
# for lang_id-sensitive xlm models | |
if hasattr(model, "config") and hasattr(model.config, "lang2id"): | |
inputs.update( | |
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} | |
) | |
if "masked" in args.model_type: | |
inputs["threshold"] = args.final_threshold | |
if args.global_topk: | |
if threshold_mem is None: | |
concat = torch.cat( | |
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] | |
) | |
n = concat.numel() | |
kth = max(n - (int(n * args.final_threshold) + 1), 1) | |
threshold_mem = concat.kthvalue(kth).values.item() | |
inputs["threshold"] = threshold_mem | |
outputs = model(**inputs) | |
for i, example_index in enumerate(example_indices): | |
eval_feature = features[example_index.item()] | |
unique_id = int(eval_feature.unique_id) | |
output = [to_list(output[i]) for output in outputs] | |
# Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" | |
# models only use two. | |
if len(output) >= 5: | |
start_logits = output[0] | |
start_top_index = output[1] | |
end_logits = output[2] | |
end_top_index = output[3] | |
cls_logits = output[4] | |
result = SquadResult( | |
unique_id, | |
start_logits, | |
end_logits, | |
start_top_index=start_top_index, | |
end_top_index=end_top_index, | |
cls_logits=cls_logits, | |
) | |
else: | |
start_logits, end_logits = output | |
result = SquadResult(unique_id, start_logits, end_logits) | |
all_results.append(result) | |
evalTime = timeit.default_timer() - start_time | |
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) | |
# Compute predictions | |
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) | |
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) | |
if args.version_2_with_negative: | |
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) | |
else: | |
output_null_log_odds_file = None | |
# XLNet and XLM use a more complex post-processing procedure | |
if args.model_type in ["xlnet", "xlm"]: | |
start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top | |
end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top | |
predictions = compute_predictions_log_probs( | |
examples, | |
features, | |
all_results, | |
args.n_best_size, | |
args.max_answer_length, | |
output_prediction_file, | |
output_nbest_file, | |
output_null_log_odds_file, | |
start_n_top, | |
end_n_top, | |
args.version_2_with_negative, | |
tokenizer, | |
args.verbose_logging, | |
) | |
else: | |
predictions = compute_predictions_logits( | |
examples, | |
features, | |
all_results, | |
args.n_best_size, | |
args.max_answer_length, | |
args.do_lower_case, | |
output_prediction_file, | |
output_nbest_file, | |
output_null_log_odds_file, | |
args.verbose_logging, | |
args.version_2_with_negative, | |
args.null_score_diff_threshold, | |
tokenizer, | |
) | |
# Compute the F1 and exact scores. | |
results = squad_evaluate(examples, predictions) | |
return results | |
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): | |
if args.local_rank not in [-1, 0] and not evaluate: | |
# Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
torch.distributed.barrier() | |
# Load data features from cache or dataset file | |
input_dir = args.data_dir if args.data_dir else "." | |
cached_features_file = os.path.join( | |
input_dir, | |
"cached_{}_{}_{}_{}".format( | |
"dev" if evaluate else "train", | |
args.tokenizer_name | |
if args.tokenizer_name | |
else list(filter(None, args.model_name_or_path.split("/"))).pop(), | |
str(args.max_seq_length), | |
list(filter(None, args.predict_file.split("/"))).pop() | |
if evaluate | |
else list(filter(None, args.train_file.split("/"))).pop(), | |
), | |
) | |
# Init features and dataset from cache if it exists | |
if os.path.exists(cached_features_file) and not args.overwrite_cache: | |
logger.info("Loading features from cached file %s", cached_features_file) | |
features_and_dataset = torch.load(cached_features_file) | |
features, dataset, examples = ( | |
features_and_dataset["features"], | |
features_and_dataset["dataset"], | |
features_and_dataset["examples"], | |
) | |
else: | |
logger.info("Creating features from dataset file at %s", input_dir) | |
if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)): | |
try: | |
import tensorflow_datasets as tfds | |
except ImportError: | |
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") | |
if args.version_2_with_negative: | |
logger.warning("tensorflow_datasets does not handle version 2 of SQuAD.") | |
tfds_examples = tfds.load("squad") | |
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) | |
else: | |
processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() | |
if evaluate: | |
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) | |
else: | |
examples = processor.get_train_examples(args.data_dir, filename=args.train_file) | |
features, dataset = squad_convert_examples_to_features( | |
examples=examples, | |
tokenizer=tokenizer, | |
max_seq_length=args.max_seq_length, | |
doc_stride=args.doc_stride, | |
max_query_length=args.max_query_length, | |
is_training=not evaluate, | |
return_dataset="pt", | |
threads=args.threads, | |
) | |
if args.local_rank in [-1, 0]: | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) | |
if args.local_rank == 0 and not evaluate: | |
# Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
torch.distributed.barrier() | |
if output_examples: | |
return dataset, examples, features | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--model_type", | |
default=None, | |
type=str, | |
required=True, | |
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models", | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model checkpoints and predictions will be written.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--data_dir", | |
default=None, | |
type=str, | |
help="The input data dir. Should contain the .json files for the task." | |
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", | |
) | |
parser.add_argument( | |
"--train_file", | |
default=None, | |
type=str, | |
help="The input training file. If a data dir is specified, will look for the file there" | |
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", | |
) | |
parser.add_argument( | |
"--predict_file", | |
default=None, | |
type=str, | |
help="The input evaluation file. If a data dir is specified, will look for the file there" | |
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", | |
) | |
parser.add_argument( | |
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
default="", | |
type=str, | |
help="Where do you want to store the pre-trained models downloaded from huggingface.co", | |
) | |
parser.add_argument( | |
"--version_2_with_negative", | |
action="store_true", | |
help="If true, the SQuAD examples contain some that do not have an answer.", | |
) | |
parser.add_argument( | |
"--null_score_diff_threshold", | |
type=float, | |
default=0.0, | |
help="If null_score - best_non_null is greater than the threshold predict null.", | |
) | |
parser.add_argument( | |
"--max_seq_length", | |
default=384, | |
type=int, | |
help=( | |
"The maximum total input sequence length after WordPiece tokenization. Sequences " | |
"longer than this will be truncated, and sequences shorter than this will be padded." | |
), | |
) | |
parser.add_argument( | |
"--doc_stride", | |
default=128, | |
type=int, | |
help="When splitting up a long document into chunks, how much stride to take between chunks.", | |
) | |
parser.add_argument( | |
"--max_query_length", | |
default=64, | |
type=int, | |
help=( | |
"The maximum number of tokens for the question. Questions longer than this will " | |
"be truncated to this length." | |
), | |
) | |
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
parser.add_argument( | |
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." | |
) | |
parser.add_argument( | |
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." | |
) | |
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") | |
parser.add_argument( | |
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." | |
) | |
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
# Pruning parameters | |
parser.add_argument( | |
"--mask_scores_learning_rate", | |
default=1e-2, | |
type=float, | |
help="The Adam initial learning rate of the mask scores.", | |
) | |
parser.add_argument( | |
"--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)." | |
) | |
parser.add_argument( | |
"--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)." | |
) | |
parser.add_argument( | |
"--initial_warmup", | |
default=1, | |
type=int, | |
help=( | |
"Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays" | |
"at its `initial_threshold` value (sparsity schedule)." | |
), | |
) | |
parser.add_argument( | |
"--final_warmup", | |
default=2, | |
type=int, | |
help=( | |
"Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays" | |
"at its final_threshold value (sparsity schedule)." | |
), | |
) | |
parser.add_argument( | |
"--pruning_method", | |
default="topK", | |
type=str, | |
help=( | |
"Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," | |
" sigmoied_threshold = Soft movement pruning)." | |
), | |
) | |
parser.add_argument( | |
"--mask_init", | |
default="constant", | |
type=str, | |
help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.", | |
) | |
parser.add_argument( | |
"--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method." | |
) | |
parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.") | |
parser.add_argument( | |
"--final_lambda", | |
default=0.0, | |
type=float, | |
help="Regularization intensity (used in conjunction with `regularization`.", | |
) | |
parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.") | |
parser.add_argument( | |
"--global_topk_frequency_compute", | |
default=25, | |
type=int, | |
help="Frequency at which we compute the TopK global threshold.", | |
) | |
# Distillation parameters (optional) | |
parser.add_argument( | |
"--teacher_type", | |
default=None, | |
type=str, | |
help=( | |
"Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" | |
" distillation." | |
), | |
) | |
parser.add_argument( | |
"--teacher_name_or_path", | |
default=None, | |
type=str, | |
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.", | |
) | |
parser.add_argument( | |
"--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation." | |
) | |
parser.add_argument( | |
"--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." | |
) | |
parser.add_argument( | |
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--num_train_epochs", | |
default=3.0, | |
type=float, | |
help="Total number of training epochs to perform.", | |
) | |
parser.add_argument( | |
"--max_steps", | |
default=-1, | |
type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
) | |
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
parser.add_argument( | |
"--n_best_size", | |
default=20, | |
type=int, | |
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", | |
) | |
parser.add_argument( | |
"--max_answer_length", | |
default=30, | |
type=int, | |
help=( | |
"The maximum length of an answer that can be generated. This is needed because the start " | |
"and end predictions are not conditioned on one another." | |
), | |
) | |
parser.add_argument( | |
"--verbose_logging", | |
action="store_true", | |
help=( | |
"If true, all of the warnings related to data processing will be printed. " | |
"A number of warnings are expected for a normal SQuAD evaluation." | |
), | |
) | |
parser.add_argument( | |
"--lang_id", | |
default=0, | |
type=int, | |
help=( | |
"language id of input for language-specific xlm models (see" | |
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" | |
), | |
) | |
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") | |
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") | |
parser.add_argument( | |
"--eval_all_checkpoints", | |
action="store_true", | |
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
) | |
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") | |
parser.add_argument( | |
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
) | |
parser.add_argument( | |
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help=( | |
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html" | |
), | |
) | |
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") | |
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") | |
args = parser.parse_args() | |
# Regularization | |
if args.regularization == "null": | |
args.regularization = None | |
if args.doc_stride >= args.max_seq_length - args.max_query_length: | |
logger.warning( | |
"WARNING - You've set a doc stride which may be superior to the document length in some " | |
"examples. This could result in errors when building features from the examples. Please reduce the doc " | |
"stride or increase the maximum length to ensure the features are correctly built." | |
) | |
if ( | |
os.path.exists(args.output_dir) | |
and os.listdir(args.output_dir) | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
args.output_dir | |
) | |
) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend="nccl") | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, | |
device, | |
args.n_gpu, | |
bool(args.local_rank != -1), | |
args.fp16, | |
) | |
# Set seed | |
set_seed(args) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
# Make sure only the first process in distributed training will download model & vocab | |
torch.distributed.barrier() | |
args.model_type = args.model_type.lower() | |
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
config = config_class.from_pretrained( | |
args.config_name if args.config_name else args.model_name_or_path, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
pruning_method=args.pruning_method, | |
mask_init=args.mask_init, | |
mask_scale=args.mask_scale, | |
) | |
tokenizer = tokenizer_class.from_pretrained( | |
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
do_lower_case=args.do_lower_case, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
model = model_class.from_pretrained( | |
args.model_name_or_path, | |
from_tf=bool(".ckpt" in args.model_name_or_path), | |
config=config, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
if args.teacher_type is not None: | |
assert args.teacher_name_or_path is not None | |
assert args.alpha_distil > 0.0 | |
assert args.alpha_distil + args.alpha_ce > 0.0 | |
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] | |
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path) | |
teacher = teacher_model_class.from_pretrained( | |
args.teacher_name_or_path, | |
from_tf=False, | |
config=teacher_config, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
teacher.to(args.device) | |
else: | |
teacher = None | |
if args.local_rank == 0: | |
# Make sure only the first process in distributed training will download model & vocab | |
torch.distributed.barrier() | |
model.to(args.device) | |
logger.info("Training/evaluation parameters %s", args) | |
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. | |
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will | |
# remove the need for this code, but it is still valid. | |
if args.fp16: | |
try: | |
import apex | |
apex.amp.register_half_function(torch, "einsum") | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
# Training | |
if args.do_train: | |
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) | |
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Save the trained model and the tokenizer | |
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
# Take care of distributed/parallel training | |
model_to_save = model.module if hasattr(model, "module") else model | |
model_to_save.save_pretrained(args.output_dir) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = model_class.from_pretrained(args.output_dir) # , force_download=True) | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
model.to(args.device) | |
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
if args.do_train: | |
logger.info("Loading checkpoints saved during training for evaluation") | |
checkpoints = [args.output_dir] | |
if args.eval_all_checkpoints: | |
checkpoints = [ | |
os.path.dirname(c) | |
for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
] | |
else: | |
logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path) | |
checkpoints = [args.model_name_or_path] | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
for checkpoint in checkpoints: | |
# Reload the model | |
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
model = model_class.from_pretrained(checkpoint) # , force_download=True) | |
model.to(args.device) | |
# Evaluate | |
result = evaluate(args, model, tokenizer, prefix=global_step) | |
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} | |
results.update(result) | |
logger.info("Results: {}".format(results)) | |
predict_file = list(filter(None, args.predict_file.split("/"))).pop() | |
if not os.path.exists(os.path.join(args.output_dir, predict_file)): | |
os.makedirs(os.path.join(args.output_dir, predict_file)) | |
output_eval_file = os.path.join(args.output_dir, predict_file, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
for key in sorted(results.keys()): | |
writer.write("%s = %s\n" % (key, str(results[key]))) | |
return results | |
if __name__ == "__main__": | |
main() | |