Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
import json | |
import logging | |
import os | |
import re | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Any, Dict, List, Optional, Union | |
import datasets | |
import numpy as np | |
import torch | |
import torchaudio | |
from packaging import version | |
from torch import nn | |
import transformers | |
from transformers import ( | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
Wav2Vec2CTCTokenizer, | |
Wav2Vec2FeatureExtractor, | |
Wav2Vec2ForCTC, | |
Wav2Vec2Processor, | |
is_apex_available, | |
set_seed, | |
) | |
from transformers.trainer_utils import get_last_checkpoint, is_main_process | |
if is_apex_available(): | |
from apex import amp | |
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): | |
_is_native_amp_available = True | |
from torch.cuda.amp import autocast | |
logger = logging.getLogger(__name__) | |
def list_field(default=None, metadata=None): | |
return field(default_factory=lambda: default, metadata=metadata) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
freeze_feature_extractor: Optional[bool] = field( | |
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} | |
) | |
attention_dropout: Optional[float] = field( | |
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} | |
) | |
activation_dropout: Optional[float] = field( | |
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} | |
) | |
hidden_dropout: Optional[float] = field( | |
default=0.1, | |
metadata={ | |
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." | |
}, | |
) | |
feat_proj_dropout: Optional[float] = field( | |
default=0.1, | |
metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, | |
) | |
mask_time_prob: Optional[float] = field( | |
default=0.05, | |
metadata={ | |
"help": ( | |
"Propability of each feature vector along the time axis to be chosen as the start of the vector" | |
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" | |
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." | |
) | |
}, | |
) | |
layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."}) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_split_name: Optional[str] = field( | |
default="train+validation", | |
metadata={ | |
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_val_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of validation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
chars_to_ignore: List[str] = list_field( | |
default=[",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�"], | |
metadata={"help": "A list of characters to remove from the transcripts."}, | |
) | |
class DataCollatorCTCWithPadding: | |
""" | |
Data collator that will dynamically pad the inputs received. | |
Args: | |
processor (:class:`~transformers.Wav2Vec2Processor`) | |
The processor used for proccessing the data. | |
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
among: | |
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. | |
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
different lengths). | |
max_length (:obj:`int`, `optional`): | |
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). | |
max_length_labels (:obj:`int`, `optional`): | |
Maximum length of the ``labels`` returned list and optionally padding length (see above). | |
pad_to_multiple_of (:obj:`int`, `optional`): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
7.5 (Volta). | |
""" | |
processor: Wav2Vec2Processor | |
padding: Union[bool, str] = True | |
max_length: Optional[int] = None | |
max_length_labels: Optional[int] = None | |
pad_to_multiple_of: Optional[int] = None | |
pad_to_multiple_of_labels: Optional[int] = None | |
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
# split inputs and labels since they have to be of different lenghts and need | |
# different padding methods | |
input_features = [{"input_values": feature["input_values"]} for feature in features] | |
label_features = [{"input_ids": feature["labels"]} for feature in features] | |
batch = self.processor.pad( | |
input_features, | |
padding=self.padding, | |
max_length=self.max_length, | |
pad_to_multiple_of=self.pad_to_multiple_of, | |
return_tensors="pt", | |
) | |
labels_batch = self.processor.pad( | |
labels=label_features, | |
padding=self.padding, | |
max_length=self.max_length_labels, | |
pad_to_multiple_of=self.pad_to_multiple_of_labels, | |
return_tensors="pt", | |
) | |
# replace padding with -100 to ignore loss correctly | |
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | |
batch["labels"] = labels | |
return batch | |
class CTCTrainer(Trainer): | |
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: | |
""" | |
Perform a training step on a batch of inputs. | |
Subclass and override to inject custom behavior. | |
Args: | |
model (:obj:`nn.Module`): | |
The model to train. | |
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): | |
The inputs and targets of the model. | |
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
argument :obj:`labels`. Check your model's documentation for all accepted arguments. | |
Return: | |
:obj:`torch.Tensor`: The tensor with training loss on this batch. | |
""" | |
model.train() | |
inputs = self._prepare_inputs(inputs) | |
if self.use_amp: | |
with autocast(): | |
loss = self.compute_loss(model, inputs) | |
else: | |
loss = self.compute_loss(model, inputs) | |
if self.args.n_gpu > 1: | |
if model.module.config.ctc_loss_reduction == "mean": | |
loss = loss.mean() | |
elif model.module.config.ctc_loss_reduction == "sum": | |
loss = loss.sum() / (inputs["labels"] >= 0).sum() | |
else: | |
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") | |
if self.args.gradient_accumulation_steps > 1: | |
loss = loss / self.args.gradient_accumulation_steps | |
if self.use_amp: | |
self.scaler.scale(loss).backward() | |
elif self.use_apex: | |
with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
scaled_loss.backward() | |
elif self.deepspeed: | |
self.deepspeed.backward(loss) | |
else: | |
loss.backward() | |
return loss.detach() | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(training_args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Get the datasets: | |
train_dataset = datasets.load_dataset( | |
"common_voice", data_args.dataset_config_name, split=data_args.train_split_name | |
) | |
eval_dataset = datasets.load_dataset("common_voice", data_args.dataset_config_name, split="test") | |
# Create and save tokenizer | |
chars_to_ignore_regex = f'[{"".join(data_args.chars_to_ignore)}]' | |
def remove_special_characters(batch): | |
batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " | |
return batch | |
train_dataset = train_dataset.map(remove_special_characters, remove_columns=["sentence"]) | |
eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) | |
def extract_all_chars(batch): | |
all_text = " ".join(batch["text"]) | |
vocab = list(set(all_text)) | |
return {"vocab": [vocab], "all_text": [all_text]} | |
vocab_train = train_dataset.map( | |
extract_all_chars, | |
batched=True, | |
batch_size=-1, | |
keep_in_memory=True, | |
remove_columns=train_dataset.column_names, | |
) | |
vocab_test = train_dataset.map( | |
extract_all_chars, | |
batched=True, | |
batch_size=-1, | |
keep_in_memory=True, | |
remove_columns=eval_dataset.column_names, | |
) | |
vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) | |
vocab_dict = {v: k for k, v in enumerate(vocab_list)} | |
vocab_dict["|"] = vocab_dict[" "] | |
del vocab_dict[" "] | |
vocab_dict["[UNK]"] = len(vocab_dict) | |
vocab_dict["[PAD]"] = len(vocab_dict) | |
with open("vocab.json", "w") as vocab_file: | |
json.dump(vocab_dict, vocab_file) | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
tokenizer = Wav2Vec2CTCTokenizer( | |
"vocab.json", | |
unk_token="[UNK]", | |
pad_token="[PAD]", | |
word_delimiter_token="|", | |
) | |
feature_extractor = Wav2Vec2FeatureExtractor( | |
feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True | |
) | |
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) | |
model = Wav2Vec2ForCTC.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
activation_dropout=model_args.activation_dropout, | |
attention_dropout=model_args.attention_dropout, | |
hidden_dropout=model_args.hidden_dropout, | |
feat_proj_dropout=model_args.feat_proj_dropout, | |
mask_time_prob=model_args.mask_time_prob, | |
gradient_checkpointing=training_args.gradient_checkpointing, | |
layerdrop=model_args.layerdrop, | |
ctc_loss_reduction="mean", | |
pad_token_id=processor.tokenizer.pad_token_id, | |
vocab_size=len(processor.tokenizer), | |
) | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
if data_args.max_val_samples is not None: | |
eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays and tokenize the targets. | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
batch["sampling_rate"] = 16_000 | |
batch["target_text"] = batch["text"] | |
return batch | |
train_dataset = train_dataset.map( | |
speech_file_to_array_fn, | |
remove_columns=train_dataset.column_names, | |
num_proc=data_args.preprocessing_num_workers, | |
) | |
eval_dataset = eval_dataset.map( | |
speech_file_to_array_fn, | |
remove_columns=eval_dataset.column_names, | |
num_proc=data_args.preprocessing_num_workers, | |
) | |
def prepare_dataset(batch): | |
# check that all files have the correct sampling rate | |
assert ( | |
len(set(batch["sampling_rate"])) == 1 | |
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." | |
processed_batch = processor( | |
audio=batch["speech"], text=batch["target_text"], sampling_rate=batch["sampling_rate"][0] | |
) | |
batch.update(processed_batch) | |
return batch | |
train_dataset = train_dataset.map( | |
prepare_dataset, | |
remove_columns=train_dataset.column_names, | |
batch_size=training_args.per_device_train_batch_size, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
) | |
eval_dataset = eval_dataset.map( | |
prepare_dataset, | |
remove_columns=eval_dataset.column_names, | |
batch_size=training_args.per_device_train_batch_size, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
) | |
# Metric | |
wer_metric = datasets.load_metric("wer") | |
def compute_metrics(pred): | |
pred_logits = pred.predictions | |
pred_ids = np.argmax(pred_logits, axis=-1) | |
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id | |
pred_str = processor.batch_decode(pred_ids) | |
# we do not want to group tokens when computing the metrics | |
label_str = processor.batch_decode(pred.label_ids, group_tokens=False) | |
wer = wer_metric.compute(predictions=pred_str, references=label_str) | |
return {"wer": wer} | |
if model_args.freeze_feature_extractor: | |
model.freeze_feature_extractor() | |
# Data collator | |
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) | |
# Initialize our Trainer | |
trainer = CTCTrainer( | |
model=model, | |
data_collator=data_collator, | |
args=training_args, | |
compute_metrics=compute_metrics, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=processor.feature_extractor, | |
) | |
# Training | |
if training_args.do_train: | |
if last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
elif os.path.isdir(model_args.model_name_or_path): | |
checkpoint = model_args.model_name_or_path | |
else: | |
checkpoint = None | |
# Save the feature_extractor and the tokenizer | |
if is_main_process(training_args.local_rank): | |
processor.save_pretrained(training_args.output_dir) | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
results = {} | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate() | |
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) | |
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
return results | |
if __name__ == "__main__": | |
main() | |