Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: | |
# hack it in for now: | |
import sys | |
from pathlib import Path | |
git_repo_path = Path(__file__).resolve().parents[3] / "src" | |
sys.path.insert(1, str(git_repo_path)) | |
import dataclasses # noqa | |
import io # noqa | |
import itertools # noqa | |
import json # noqa | |
import os # noqa | |
import unittest # noqa | |
from copy import deepcopy # noqa | |
from parameterized import parameterized # noqa | |
from transformers import TrainingArguments, is_torch_available # noqa | |
from transformers.integrations.deepspeed import is_deepspeed_available # noqa | |
from transformers.file_utils import WEIGHTS_NAME # noqa | |
from transformers.testing_utils import ( # noqa | |
CaptureLogger, | |
ExtendSysPath, | |
TestCasePlus, | |
execute_subprocess_async, | |
get_gpu_count, | |
mockenv_context, | |
require_deepspeed, | |
require_torch_gpu, | |
require_torch_multi_gpu, | |
slow, | |
) | |
from transformers.trainer_utils import set_seed # noqa | |
set_seed(42) | |
models = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} | |
ZERO2 = "zero2" | |
ZERO3 = "zero3" | |
stages = [ZERO2, ZERO3] | |
def custom_name_func(func, param_num, param): | |
# customize the test name generator function as we want both params to appear in the sub-test | |
# name, as by default it shows only the first param | |
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) | |
return f"{func.__name__}_{param_based_name}" | |
# Cartesian-product of zero stages with models to test | |
params = list(itertools.product(stages, models.keys())) | |
class TestDeepSpeedWav2Vec2(TestCasePlus): | |
def test_fp32_non_distributed(self, stage, model): | |
self.run_and_check( | |
stage=stage, | |
model=model, | |
distributed=False, | |
fp16=False, | |
) | |
def test_fp32_distributed(self, stage, model): | |
self.run_and_check( | |
stage=stage, | |
model=model, | |
distributed=True, | |
fp16=False, | |
) | |
def test_fp16_non_distributed(self, stage, model): | |
self.run_and_check( | |
stage=stage, | |
model=model, | |
distributed=False, | |
fp16=True, | |
) | |
def test_fp16_distributed(self, stage, model): | |
self.run_and_check( | |
stage=stage, | |
model=model, | |
distributed=True, | |
fp16=True, | |
) | |
def do_checks(self, output_dir): | |
# XXX: run_asr is premature and doesn't save any results | |
# so all we check for now is that the process didn't fail | |
pass | |
# XXX: need to do better validation beyond just that the run was successful | |
def run_and_check( | |
self, | |
stage: str, | |
model: str, | |
eval_steps: int = 10, | |
distributed: bool = True, | |
quality_checks: bool = True, | |
fp16: bool = True, | |
): | |
model_name = models[model] | |
output_dir = self.run_trainer( | |
stage=stage, | |
model_name=model_name, | |
eval_steps=eval_steps, | |
num_train_epochs=1, | |
distributed=distributed, | |
fp16=fp16, | |
) | |
self.do_checks(output_dir) | |
return output_dir | |
def run_trainer( | |
self, | |
stage: str, | |
model_name: str, | |
eval_steps: int = 10, | |
num_train_epochs: int = 1, | |
distributed: bool = True, | |
fp16: bool = True, | |
): | |
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) | |
args = f""" | |
--model_name_or_path {model_name} | |
--dataset_name hf-internal-testing/librispeech_asr_dummy | |
--dataset_config_name clean | |
--train_split_name validation | |
--validation_split_name validation | |
--output_dir {output_dir} | |
--num_train_epochs {str(num_train_epochs)} | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 2 | |
--evaluation_strategy steps | |
--learning_rate 5e-4 | |
--warmup_steps 8 | |
--orthography timit | |
--preprocessing_num_workers 1 | |
--group_by_length | |
--freeze_feature_extractor | |
--report_to none | |
--save_steps 0 | |
--eval_steps {eval_steps} | |
--report_to none | |
""".split() | |
if fp16: | |
args.extend(["--fp16"]) | |
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, | |
# hence the separate config files | |
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() | |
script = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] | |
launcher = self.get_launcher(distributed) | |
cmd = launcher + script + args + ds_args | |
# keep for quick debug | |
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die | |
execute_subprocess_async(cmd, env=self.get_env()) | |
return output_dir | |
def get_launcher(self, distributed=False): | |
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup | |
# - it won't be able to handle that | |
# 2. for now testing with just 2 gpus max (since some quality tests may give different | |
# results with mode gpus because we use very little data) | |
num_gpus = min(2, get_gpu_count()) if distributed else 1 | |
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split() | |