Spaces:
Runtime error
Runtime error
File size: 5,756 Bytes
a9e7d31 5d26322 a9e7d31 5d26322 2184a6f a9e7d31 cdff18d da700a9 a9e7d31 1d89618 a9e7d31 1d89618 a9e7d31 6e3d5eb a9e7d31 da700a9 a9e7d31 da700a9 9f1411e da700a9 a9e7d31 5d26322 a9e7d31 b0042a5 a9e7d31 da700a9 a9e7d31 6e3d5eb da700a9 a9e7d31 97f74a7 da700a9 a9e7d31 5d26322 2184a6f 5d26322 a9e7d31 6e3d5eb aeb451a a9e7d31 97f74a7 a9e7d31 da700a9 a9e7d31 aeb451a a9e7d31 6e3d5eb a9e7d31 da700a9 a9e7d31 da700a9 a9e7d31 6e3d5eb da700a9 a9e7d31 da700a9 a9e7d31 b0042a5 da700a9 b0042a5 a9e7d31 b0042a5 a9e7d31 b0042a5 a9e7d31 2184a6f da700a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
from threading import Thread
import gradio as gr
import torch
from transformers import (AutoModelForCausalLM, AutoTokenizer,
TextIteratorStreamer)
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "trl-lib/llama-se-rl-merged"
print(f"Loading model: {model_id}")
if device == "cpu":
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, use_auth_token=HF_TOKEN)
else:
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="auto", load_in_8bit=True, use_auth_token=HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""
def generate(instruction, temperature=0.7, max_new_tokens=256, top_p=0.95, top_k=40):
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
temperature = float(temperature)
top_p = float(top_p)
streamer = TextIteratorStreamer(tokenizer)
model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
generate_kwargs = dict(
top_p=top_p,
temperature=temperature,
max_new_tokens=max_new_tokens,
do_sample=True,
top_k=top_k,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
t.start()
output = ""
hidden_output = ""
for new_text in streamer:
# skip streaming until new text is available
if len(hidden_output) <= len(formatted_instruction):
hidden_output += new_text
continue
# replace eos token
# if tokenizer.eos_token in new_text:
# new_text = new_text.replace(tokenizer.eos_token, "")
output += new_text
yield output
return output
examples = [
"How do I create an array in C++ of length 5 which contains all even numbers between 1 and 10?",
"How can I write a Java function to generate the nth Fibonacci number?",
"How can I sort a list in Python?",
]
def process_example(args):
for x in generate(args):
pass
return x
with gr.Blocks(theme=theme, analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown(
"""<h1><center>🦙🦙🦙 StackLLaMa 🦙🦙🦙</center></h1>
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of programming questions and answers from [Stack Overflow](https://stackoverflow.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our blog post [ADD LINK].
Type in the box below and click the button to generate answers to your most pressing coding questions 🔥!
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown()
# output = gr.Textbox(
# interactive=False,
# lines=8,
# label="Answer",
# placeholder="Here will be the answer to your question",
# )
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=True,
fn=process_example,
outputs=[output],
)
with gr.Column(scale=1):
temperature = gr.Slider(
label="Temperature",
value=0.7,
minimum=0.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=64,
minimum=0,
maximum=2048,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
top_k = gr.Slider(
label="Top-k",
value=40,
minimum=0,
maximum=100,
step=2,
interactive=True,
info="Sample from top-k tokens",
)
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
demo.queue(concurrency_count=1)
demo.launch(enable_queue=True, share=True)
|