|
import pandas as pd
|
|
import torch
|
|
from torch import nn
|
|
from models.networks.utils import UnormGPS
|
|
|
|
|
|
class Random(nn.Module):
|
|
def __init__(self, num_output):
|
|
"""Random"""
|
|
super().__init__()
|
|
self.num_output = num_output
|
|
self.unorm = UnormGPS()
|
|
|
|
def forward(self, x):
|
|
"""Predicts GPS coordinates from an image.
|
|
Args:
|
|
x: torch.Tensor with features
|
|
"""
|
|
|
|
gps = torch.rand((x.shape[0], self.num_output), device=x.device) * 2 - 1
|
|
return {"gps": self.unorm(gps)}
|
|
|
|
|
|
class RandomCoords(nn.Module):
|
|
def __init__(self, coords_path: str):
|
|
"""Randomly sample from a list of coordinates
|
|
Args:
|
|
coords_path: str with path to csv file with coordinates
|
|
"""
|
|
super().__init__()
|
|
coordinates = pd.read_csv(coords_path)
|
|
longitudes = coordinates["longitude"].values / 180
|
|
latitudes = coordinates["latitude"].values / 90
|
|
self.unorm = UnormGPS()
|
|
del coordinates
|
|
|
|
self.N = len(longitudes)
|
|
assert len(longitudes) == len(latitudes)
|
|
self.coordinates = torch.stack(
|
|
[torch.tensor(latitudes), torch.tensor(longitudes)],
|
|
dim=-1,
|
|
)
|
|
del longitudes, latitudes
|
|
|
|
def forward(self, x):
|
|
"""Predicts GPS coordinates from an image.
|
|
Args:
|
|
x: torch.Tensor with features
|
|
"""
|
|
x = x["img"]
|
|
|
|
n = torch.randint(0, self.N, (x.shape[0],))
|
|
return {"gps": self.unorm(self.coordinates[n].to(x.device))}
|
|
|