# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'title', 'description', 'article', 'interpretation', 'enable_queue', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] # %% app.ipynb 1 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% app.ipynb 3 learn = load_learner("model.pkl") # %% app.ipynb 5 categories = ("Dog", "Cat") def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # %% app.ipynb 8 title = "Cat or Dog Classifier" description = "A Cat or Dog classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article="
" interpretation='default' enable_queue=True # %% app.ipynb 9 image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ["dog1.jpg", "dog2.jpg", "dog3.jpg", "cat1.jpg", "cat2.jpg"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, title=title, description=description, article=article, interpretation=interpretation, enable_queue=enable_queue) intf.launch(inline=False)