trumble2024 commited on
Commit
0e67816
·
1 Parent(s): 5f12969

test rick and morty

Browse files
Files changed (1) hide show
  1. app.py +45 -7
app.py CHANGED
@@ -1,11 +1,49 @@
 
1
  import gradio as gr
2
- from transformers import pipeline
3
 
4
- def greet(name):
5
- return pipe
6
 
7
- pipe = pipeline('sentiment-analysis')
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- iface = gr.Interface(fn=greet, inputs='text', outputs='text')
10
- # to share public link - set share=True in launch()
11
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
 
3
 
4
+ HF_TOKEN = os.getenv('HF_TOKEN')
5
+ hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")
6
 
7
+ title = "Talk To Me Morty"
8
+ description = """
9
+ <p>
10
+ <center>
11
+ The bot was trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.
12
+ <img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="200"/>
13
+ </center>
14
+ </p>
15
+ """
16
+ article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center><center><img src='https://visitor-badge.glitch.me/badge?page_id=kingabzpro/Rick_and_Morty_Bot' alt='visitor badge'></center></p>"
17
+ examples = [["How are you Rick?"]]
18
+ from transformers import AutoModelForCausalLM, AutoTokenizer
19
+ import torch
20
 
21
+ tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
22
+ model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
23
+
24
+ def predict(input, history=[]):
25
+ # tokenize the new input sentence
26
+ new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
27
+
28
+ # append the new user input tokens to the chat history
29
+ bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
30
+
31
+ # generate a response
32
+ history = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id).tolist()
33
+
34
+ # convert the tokens to text, and then split the responses into lines
35
+ response = tokenizer.decode(history[0]).split("<|endoftext|>")
36
+ #print('decoded_response-->>'+str(response))
37
+ response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
38
+ #print('response-->>'+str(response))
39
+ return response, history
40
+
41
+ gr.Interface(fn=predict,
42
+ title=title,
43
+ description=description,
44
+ examples=examples,
45
+ flagging_callback = hf_writer,
46
+ allow_flagging = "manual",
47
+ inputs=["text", "state"],
48
+ outputs=["chatbot", "state"],
49
+ theme='gradio/seafoam').launch()