Spaces:
Running
Running
File size: 11,288 Bytes
57355cc 0cc73e9 57355cc 0cc73e9 57355cc 0cc73e9 57355cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
from huggingface_hub import snapshot_download
import rasterio
from rasterio.enums import Resampling
from rasterio.plot import reshape_as_image
import sys
# Download the entire repository to a subdirectory
repo_id = "truthdotphd/cloud-detection"
repo_subdir = "."
repo_dir = snapshot_download(repo_id=repo_id, local_dir=repo_subdir)
# Add the repository directory to the Python path
sys.path.append(repo_dir)
# Import the necessary functions from the downloaded modules
try:
from omnicloudmask import predict_from_array
except ImportError:
omnicloudmask_dir = os.path.join(repo_dir, "omnicloudmask")
if os.path.exists(omnicloudmask_dir):
sys.path.append(omnicloudmask_dir)
from omnicloudmask import predict_from_array
else:
raise ImportError("Could not find the omnicloudmask module in the downloaded repository")
def visualize_rgb(red_file, green_file, blue_file, nir_file):
"""
Create and display an RGB visualization immediately after images are uploaded.
"""
if not all([red_file, green_file, blue_file, nir_file]):
return None
try:
# Get dimensions from red band to use for resampling
with rasterio.open(red_file) as src:
target_height = src.height
target_width = src.width
# Load bands
blue_data = load_band(blue_file)
green_data = load_band(green_file)
red_data = load_band(red_file)
# Compute max values for each channel for dynamic normalization
red_max = np.max(red_data)
green_max = np.max(green_data)
blue_max = np.max(blue_data)
# Create RGB image for visualization with dynamic normalization
rgb_image = np.zeros((red_data.shape[0], red_data.shape[1], 3), dtype=np.float32)
# Normalize each channel individually
epsilon = 1e-10
rgb_image[:, :, 0] = red_data / (red_max + epsilon)
rgb_image[:, :, 1] = green_data / (green_max + epsilon)
rgb_image[:, :, 2] = blue_data / (blue_max + epsilon)
# Clip values to 0-1 range
rgb_image = np.clip(rgb_image, 0, 1)
# Apply contrast enhancement for better visualization
p2 = np.percentile(rgb_image, 2)
p98 = np.percentile(rgb_image, 98)
rgb_image_enhanced = np.clip((rgb_image - p2) / (p98 - p2), 0, 1)
# Convert to uint8 for display
rgb_display = (rgb_image_enhanced * 255).astype(np.uint8)
return rgb_display
except Exception as e:
print(f"Error generating RGB preview: {e}")
return None
def visualize_jp2(file_path):
"""
Visualize a single JP2 file.
"""
with rasterio.open(file_path) as src:
# Read the data
data = src.read(1)
# Normalize the data for visualization
data = (data - np.min(data)) / (np.max(data) - np.min(data))
# Apply a colormap for better visualization
cmap = plt.get_cmap('viridis')
colored_image = cmap(data)
# Convert to 8-bit for display
return (colored_image[:, :, :3] * 255).astype(np.uint8)
def load_band(file_path, resample=False, target_height=None, target_width=None):
"""
Load a single band from a raster file with optional resampling.
"""
with rasterio.open(file_path) as src:
if resample and target_height is not None and target_width is not None:
band_data = src.read(
out_shape=(src.count, target_height, target_width),
resampling=Resampling.bilinear
)[0].astype(np.float32)
else:
band_data = src.read()[0].astype(np.float32)
return band_data
def prepare_input_array(red_file, green_file, blue_file, nir_file):
"""
Prepare a stacked array of satellite bands for cloud mask prediction.
"""
# Get dimensions from red band to use for resampling
with rasterio.open(red_file) as src:
target_height = src.height
target_width = src.width
# Load bands (resample NIR band to match 10m resolution)
blue_data = load_band(blue_file)
green_data = load_band(green_file)
red_data = load_band(red_file)
nir_data = load_band(
nir_file,
resample=True,
target_height=target_height,
target_width=target_width
)
# Print band shapes for debugging
print(f"Band shapes - Blue: {blue_data.shape}, Green: {green_data.shape}, Red: {red_data.shape}, NIR: {nir_data.shape}")
# Compute max values for each channel for dynamic normalization
red_max = np.max(red_data)
green_max = np.max(green_data)
blue_max = np.max(blue_data)
print(f"Max values - Red: {red_max}, Green: {green_max}, Blue: {blue_max}")
# Create RGB image for visualization with dynamic normalization
rgb_image = np.zeros((red_data.shape[0], red_data.shape[1], 3), dtype=np.float32)
# Normalize each channel individually
# Add a small epsilon to avoid division by zero
epsilon = 1e-10
rgb_image[:, :, 0] = red_data / (red_max + epsilon)
rgb_image[:, :, 1] = green_data / (green_max + epsilon)
rgb_image[:, :, 2] = blue_data / (blue_max + epsilon)
# Clip values to 0-1 range
rgb_image = np.clip(rgb_image, 0, 1)
# Optional: Apply contrast enhancement for better visualization
p2 = np.percentile(rgb_image, 2)
p98 = np.percentile(rgb_image, 98)
rgb_image_enhanced = np.clip((rgb_image - p2) / (p98 - p2), 0, 1)
# Stack bands in CHW format for cloud mask prediction (red, green, nir)
prediction_array = np.stack([red_data, green_data, nir_data], axis=0)
return prediction_array, rgb_image_enhanced
def visualize_cloud_mask(rgb_image, pred_mask):
"""
Create a visualization of the cloud mask overlaid on the RGB image.
"""
# Ensure pred_mask has the right dimensions
if pred_mask.ndim > 2:
pred_mask = np.squeeze(pred_mask)
print(f"RGB image shape: {rgb_image.shape}, Pred mask shape: {pred_mask.shape}")
# Ensure mask has the same spatial dimensions as the image
if pred_mask.shape != rgb_image.shape[:2]:
pred_mask = cv2.resize(
pred_mask.astype(np.float32),
(rgb_image.shape[1], rgb_image.shape[0]),
interpolation=cv2.INTER_NEAREST
).astype(np.uint8)
print(f"Resized mask shape: {pred_mask.shape}")
# Define colors for each class
colors = {
0: [0, 255, 0], # Clear - Green
1: [255, 255, 255], # Thick Cloud - White
2: [200, 200, 200], # Thin Cloud - Light Gray
3: [100, 100, 100] # Cloud Shadow - Dark Gray
}
# Create a color-coded mask
mask_vis = np.zeros((pred_mask.shape[0], pred_mask.shape[1], 3), dtype=np.uint8)
for class_idx, color in colors.items():
mask_vis[pred_mask == class_idx] = color
# Create a blended visualization
alpha = 0.5
blended = cv2.addWeighted((rgb_image * 255).astype(np.uint8), 1-alpha, mask_vis, alpha, 0)
# Get the width of the blended image for the legend
image_width = blended.shape[1]
# Create a legend with the same width as the image
legend = np.ones((100, image_width, 3), dtype=np.uint8) * 255
legend_text = ["Clear", "Thick Cloud", "Thin Cloud", "Cloud Shadow"]
legend_colors = [colors[i] for i in range(4)]
for i, (text, color) in enumerate(zip(legend_text, legend_colors)):
cv2.rectangle(legend, (10, 10 + i*20), (30, 30 + i*20), color, -1)
cv2.putText(legend, text, (40, 25 + i*20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
# Combine image and legend
final_output = np.vstack([blended, legend])
return final_output
def process_satellite_images(red_file, green_file, blue_file, nir_file, batch_size, patch_size, patch_overlap):
"""
Process the satellite images and detect clouds.
"""
if not all([red_file, green_file, blue_file, nir_file]):
return None, None, "Please upload all four channel files (Red, Green, Blue, NIR)"
# Prepare input array and RGB image for visualization
input_array, rgb_image = prepare_input_array(red_file, green_file, blue_file, nir_file)
# Convert RGB image to format suitable for display
rgb_display = (rgb_image * 255).astype(np.uint8)
# Predict cloud mask using omnicloudmask
pred_mask = predict_from_array(
input_array,
batch_size=batch_size,
patch_size=patch_size,
patch_overlap=patch_overlap
)
# Calculate class distribution
if pred_mask.ndim > 2:
flat_mask = np.squeeze(pred_mask)
else:
flat_mask = pred_mask
clear_pixels = np.sum(flat_mask == 0)
thick_cloud_pixels = np.sum(flat_mask == 1)
thin_cloud_pixels = np.sum(flat_mask == 2)
cloud_shadow_pixels = np.sum(flat_mask == 3)
total_pixels = flat_mask.size
stats = f"""
Cloud Mask Statistics:
- Clear: {clear_pixels} pixels ({clear_pixels/total_pixels*100:.2f}%)
- Thick Cloud: {thick_cloud_pixels} pixels ({thick_cloud_pixels/total_pixels*100:.2f}%)
- Thin Cloud: {thin_cloud_pixels} pixels ({thin_cloud_pixels/total_pixels*100:.2f}%)
- Cloud Shadow: {cloud_shadow_pixels} pixels ({cloud_shadow_pixels/total_pixels*100:.2f}%)
- Total Cloud Cover: {(thick_cloud_pixels + thin_cloud_pixels)/total_pixels*100:.2f}%
"""
# Visualize the cloud mask on the original image
visualization = visualize_cloud_mask(rgb_image, flat_mask)
return rgb_display, visualization, stats
# Create Gradio interface with default examples
demo = gr.Interface(
fn=process_satellite_images,
inputs=[
gr.File(label="Red Channel (JP2)"),
gr.File(label="Green Channel (JP2)"),
gr.File(label="Blue Channel (JP2)"),
gr.File(label="NIR Channel (JP2)"),
gr.Slider(minimum=1, maximum=32, value=1, step=1, label="Batch Size", info="Higher values use more memory but process faster"),
gr.Slider(minimum=500, maximum=2000, value=1000, step=100, label="Patch Size", info="Size of image patches for processing"),
gr.Slider(minimum=100, maximum=500, value=300, step=50, label="Patch Overlap", info="Overlap between patches to avoid edge artifacts")
],
outputs=[
gr.Image(label="Original RGB Image"),
gr.Image(label="Cloud Detection Visualization"),
gr.Textbox(label="Statistics")
],
title="Satellite Cloud Detection",
description="""
Upload separate JP2 files for Red, Green, Blue, and NIR channels to detect clouds in satellite imagery.
This application uses the OmniCloudMask model to classify each pixel as:
- Clear (0)
- Thick Cloud (1)
- Thin Cloud (2)
- Cloud Shadow (3)
The model works best with imagery at 10-50m resolution. For higher resolution imagery, downsampling is recommended.
""",
examples=[
["jp2s/B04.jp2", "jp2s/B03.jp2", "jp2s/B02.jp2", "jp2s/B8A.jp2", 1, 1000, 300]
]
)
# Launch the app
demo.launch(debug=True)
|