Spaces:
Running
Running
vessel detection app
Browse files- app.py +31 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
# Download and load the model
|
7 |
+
repo_id = "truthdotphd/vessel-detection"
|
8 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.pt")
|
9 |
+
model = YOLO(model_path)
|
10 |
+
|
11 |
+
def detect_vessels(image):
|
12 |
+
# Run inference
|
13 |
+
results = model(image)
|
14 |
+
|
15 |
+
# Plot results
|
16 |
+
annotated_image = results[0].plot()
|
17 |
+
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
18 |
+
|
19 |
+
# Create Gradio interface
|
20 |
+
demo = gr.Interface(
|
21 |
+
fn=detect_vessels,
|
22 |
+
inputs=gr.Image(type="numpy"),
|
23 |
+
outputs=gr.Image(),
|
24 |
+
title="Maritime Vessel Detection",
|
25 |
+
description="Upload an image to detect vessels",
|
26 |
+
examples=[["vessels.jpg"]],
|
27 |
+
theme=gr.themes.Soft()
|
28 |
+
)
|
29 |
+
|
30 |
+
# Launch the app
|
31 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics
|
3 |
+
huggingface_hub
|
4 |
+
opencv-python
|