Spaces:
Runtime error
Runtime error
from transformers import LongT5ForConditionalGeneration, AutoTokenizer | |
import time | |
N = 2 # Number of previous QA pairs to use for context | |
MAX_NEW_TOKENS = 128 # Maximum number of tokens for each answer | |
tokenizer = AutoTokenizer.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa") | |
model = LongT5ForConditionalGeneration.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa") | |
with open("context_short.txt", "r") as f: | |
context = f.read() | |
def build_input(question, user_history=[], bot_history=[]): | |
model_input = f"{context} || " | |
previous = min(len(bot_history[1:]), N) | |
for i in range(previous, 0, -1): | |
prev_question = user_history[-i-1] | |
prev_answer = bot_history[-i] | |
model_input += f"<Q{i}> {prev_question} <A{i}> {prev_answer} " | |
model_input += f"<Q> {question} <A> " | |
return model_input | |
def get_model_answer(question, user_history=[], bot_history=[]): | |
start = time.perf_counter() | |
model_input = build_input(question, user_history, bot_history) | |
end = time.perf_counter() | |
print(f"Build input: {end-start}") | |
start = time.perf_counter() | |
encoded_inputs = tokenizer(model_input, max_length=3000, truncation=True, return_tensors="pt") | |
input_ids, attention_mask = ( | |
encoded_inputs.input_ids, | |
encoded_inputs.attention_mask | |
) | |
end = time.perf_counter() | |
print(f"Tokenize: {end-start}") | |
start = time.perf_counter() | |
encoded_output = model.generate(input_ids=input_ids, attention_mask=attention_mask, do_sample=True, max_new_tokens=MAX_NEW_TOKENS) | |
answer = tokenizer.decode(encoded_output[0], skip_special_tokens=True) | |
end = time.perf_counter() | |
print(f"Generate: {end-start}") | |
user_history.append(question) | |
bot_history.append(answer) | |
return answer, user_history, bot_history | |