Spaces:
Runtime error
Runtime error
import numpy as np | |
from norfair import AbsolutePaths, Paths, Tracker, Video | |
from norfair.camera_motion import HomographyTransformationGetter, MotionEstimator | |
from norfair.distances import create_normalized_mean_euclidean_distance | |
from custom_models import YOLO, yolo_detections_to_norfair_detections | |
from demo_utils.configuration import ( | |
DISTANCE_THRESHOLD_CENTROID, | |
examples, | |
models_path, | |
style, | |
) | |
from demo_utils.draw import center, draw | |
def inference( | |
input_video: str, | |
model: str = "YOLOv7", | |
features: str = [0, 1], | |
track_points: str = "Bounding box", | |
model_threshold: float = 0.25, | |
): | |
coord_transformations = None | |
paths_drawer = None | |
fix_paths = False | |
classes = None | |
track_points = style[track_points] | |
model = YOLO(models_path[model]) | |
video = Video(input_path=input_video) | |
motion_estimation = len(features) > 0 and ( | |
features[0] == 0 or (len(features) > 1 and features[1] == 0) | |
) | |
drawing_paths = len(features) > 0 and ( | |
features[0] == 1 or (len(features) > 1 and features[1] == 1) | |
) | |
if motion_estimation: | |
transformations_getter = HomographyTransformationGetter() | |
motion_estimator = MotionEstimator( | |
max_points=500, min_distance=7, transformations_getter=transformations_getter | |
) | |
distance_function = create_normalized_mean_euclidean_distance( | |
video.input_height, video.input_width | |
) | |
distance_threshold = DISTANCE_THRESHOLD_CENTROID | |
if motion_estimation and drawing_paths: | |
fix_paths = True | |
# Examples configuration | |
for example in examples: | |
if example not in input_video: | |
continue | |
fix_paths = examples[example]["absolute_path"] | |
distance_threshold = examples[example]["distance_threshold"] | |
classes = examples[example]["classes"] | |
print(f"Set config to {example}: {fix_paths} {distance_threshold} {classes}") | |
break | |
tracker = Tracker( | |
distance_function=distance_function, | |
distance_threshold=distance_threshold, | |
) | |
if drawing_paths: | |
paths_drawer = Paths(center, attenuation=0.01) | |
if fix_paths: | |
paths_drawer = AbsolutePaths(max_history=50, thickness=2) | |
for frame in video: | |
yolo_detections = model( | |
frame, | |
conf_threshold=model_threshold, | |
iou_threshold=0.45, | |
image_size=720, | |
classes=classes, | |
) | |
detections = yolo_detections_to_norfair_detections( | |
yolo_detections, track_points=track_points | |
) | |
tracked_objects = tracker.update( | |
detections=detections, coord_transformations=coord_transformations | |
) | |
mask = np.ones(frame.shape[:2], frame.dtype) | |
if track_points == "bbox": | |
for det in detections: | |
i = det.points.astype(int) | |
mask[i[0, 1] : i[1, 1], i[0, 0] : i[1, 0]] = 0 | |
if motion_estimation: | |
coord_transformations = motion_estimator.update(frame, mask) | |
frame = draw( | |
paths_drawer, | |
track_points, | |
frame, | |
detections, | |
tracked_objects, | |
coord_transformations, | |
fix_paths, | |
) | |
video.write(frame) | |
base_file_name = input_video.split("/")[-1].split(".")[0] | |
file_name = base_file_name + "_out.mp4" | |
return file_name | |