Spaces:
Runtime error
Runtime error
Diego Fernandez
commited on
Commit
•
210ae8c
1
Parent(s):
088dea4
chore: improve code
Browse files- app.py +8 -2
- inference_utils.py → custom_models/Yolo.py +1 -100
- custom_models/__init__.py +1 -0
- models/.gitkeep → demo_utils/__init__.py +0 -0
- demo_utils/configuration.py +7 -0
- demo_utils/distance_function.py +54 -0
- demo_utils/draw.py +30 -0
- demo_utils/files.py +10 -0
- inference.py +18 -15
app.py
CHANGED
@@ -10,6 +10,13 @@ dd_model = gr.Dropdown(choices=["YoloV7", "YoloV7 Tiny"], value="YoloV7", label=
|
|
10 |
|
11 |
cb_motion_estimation = gr.Checkbox(value=True, label="Track camera movement")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
cb_path_draw = gr.Checkbox(value=True, label="Draw objects paths")
|
14 |
|
15 |
dd_track_points = gr.Dropdown(
|
@@ -33,8 +40,7 @@ iface = gr.Interface(
|
|
33 |
inputs=[
|
34 |
input_video,
|
35 |
dd_model,
|
36 |
-
|
37 |
-
cb_path_draw,
|
38 |
dd_track_points,
|
39 |
slide_threshold,
|
40 |
],
|
|
|
10 |
|
11 |
cb_motion_estimation = gr.Checkbox(value=True, label="Track camera movement")
|
12 |
|
13 |
+
features = gr.CheckboxGroup(
|
14 |
+
choices=["Track camera movement", "Draw objects paths"],
|
15 |
+
value=["Track camera movement", "Draw objects paths"],
|
16 |
+
label="Features",
|
17 |
+
type="index"
|
18 |
+
)
|
19 |
+
|
20 |
cb_path_draw = gr.Checkbox(value=True, label="Draw objects paths")
|
21 |
|
22 |
dd_track_points = gr.Dropdown(
|
|
|
40 |
inputs=[
|
41 |
input_video,
|
42 |
dd_model,
|
43 |
+
features,
|
|
|
44 |
dd_track_points,
|
45 |
slide_threshold,
|
46 |
],
|
inference_utils.py → custom_models/Yolo.py
RENAMED
@@ -1,23 +1,9 @@
|
|
1 |
-
import argparse
|
2 |
-
import glob
|
3 |
import os
|
4 |
-
from enum import Enum
|
5 |
from typing import List, Optional, Union
|
6 |
|
7 |
-
import norfair
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
-
|
11 |
-
from norfair import Detection, draw_absolute_grid
|
12 |
-
|
13 |
-
DISTANCE_THRESHOLD_BBOX: float = 3.33
|
14 |
-
DISTANCE_THRESHOLD_CENTROID: int = 30
|
15 |
-
MAX_DISTANCE: int = 10000
|
16 |
-
|
17 |
-
|
18 |
-
models_path = {"YoloV7": "models/yolov7.pt", "YoloV7 Tiny": "models/yolov7-tiny.pt"}
|
19 |
-
|
20 |
-
style = {"Bounding box": "bbox", "Centroid": "centroid"}
|
21 |
|
22 |
|
23 |
class YOLO:
|
@@ -56,59 +42,6 @@ class YOLO:
|
|
56 |
return detections
|
57 |
|
58 |
|
59 |
-
def euclidean_distance(detection, tracked_object):
|
60 |
-
return np.linalg.norm(detection.points - tracked_object.estimate)
|
61 |
-
|
62 |
-
|
63 |
-
def center(points):
|
64 |
-
return [np.mean(np.array(points), axis=0)]
|
65 |
-
|
66 |
-
|
67 |
-
def iou_pytorch(detection, tracked_object):
|
68 |
-
# Slower but simplier version of iou
|
69 |
-
|
70 |
-
detection_points = np.concatenate([detection.points[0], detection.points[1]])
|
71 |
-
tracked_object_points = np.concatenate([tracked_object.estimate[0], tracked_object.estimate[1]])
|
72 |
-
|
73 |
-
box_a = torch.tensor([detection_points], dtype=torch.float)
|
74 |
-
box_b = torch.tensor([tracked_object_points], dtype=torch.float)
|
75 |
-
iou = bops.box_iou(box_a, box_b)
|
76 |
-
|
77 |
-
# Since 0 <= IoU <= 1, we define 1/IoU as a distance.
|
78 |
-
# Distance values will be in [1, inf)
|
79 |
-
return np.float(1 / iou if iou else MAX_DISTANCE)
|
80 |
-
|
81 |
-
|
82 |
-
def iou(detection, tracked_object):
|
83 |
-
# Detection points will be box A
|
84 |
-
# Tracked objects point will be box B.
|
85 |
-
|
86 |
-
box_a = np.concatenate([detection.points[0], detection.points[1]])
|
87 |
-
box_b = np.concatenate([tracked_object.estimate[0], tracked_object.estimate[1]])
|
88 |
-
|
89 |
-
x_a = max(box_a[0], box_b[0])
|
90 |
-
y_a = max(box_a[1], box_b[1])
|
91 |
-
x_b = min(box_a[2], box_b[2])
|
92 |
-
y_b = min(box_a[3], box_b[3])
|
93 |
-
|
94 |
-
# Compute the area of intersection rectangle
|
95 |
-
inter_area = max(0, x_b - x_a + 1) * max(0, y_b - y_a + 1)
|
96 |
-
|
97 |
-
# Compute the area of both the prediction and tracker
|
98 |
-
# rectangles
|
99 |
-
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
100 |
-
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
101 |
-
|
102 |
-
# Compute the intersection over union by taking the intersection
|
103 |
-
# area and dividing it by the sum of prediction + tracker
|
104 |
-
# areas - the interesection area
|
105 |
-
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
106 |
-
|
107 |
-
# Since 0 <= IoU <= 1, we define 1/IoU as a distance.
|
108 |
-
# Distance values will be in [1, inf)
|
109 |
-
return 1 / iou if iou else (MAX_DISTANCE)
|
110 |
-
|
111 |
-
|
112 |
def yolo_detections_to_norfair_detections(
|
113 |
yolo_detections: torch.tensor, track_points: str = "centroid" # bbox or centroid
|
114 |
) -> List[Detection]:
|
@@ -134,35 +67,3 @@ def yolo_detections_to_norfair_detections(
|
|
134 |
norfair_detections.append(Detection(points=bbox, scores=scores))
|
135 |
|
136 |
return norfair_detections
|
137 |
-
|
138 |
-
|
139 |
-
def clean_videos(path: str):
|
140 |
-
# Remove past videos
|
141 |
-
files = glob.glob(f"{path}/*")
|
142 |
-
for file in files:
|
143 |
-
if file.endswith(".mp4"):
|
144 |
-
os.remove(file)
|
145 |
-
|
146 |
-
|
147 |
-
def draw(
|
148 |
-
paths_drawer,
|
149 |
-
track_points,
|
150 |
-
frame,
|
151 |
-
detections,
|
152 |
-
tracked_objects,
|
153 |
-
coord_transformations,
|
154 |
-
fix_paths,
|
155 |
-
):
|
156 |
-
if track_points == "centroid":
|
157 |
-
norfair.draw_points(frame, detections)
|
158 |
-
norfair.draw_tracked_objects(frame, tracked_objects)
|
159 |
-
elif track_points == "bbox":
|
160 |
-
norfair.draw_boxes(frame, detections)
|
161 |
-
norfair.draw_tracked_boxes(frame, tracked_objects)
|
162 |
-
|
163 |
-
if fix_paths:
|
164 |
-
frame = paths_drawer.draw(frame, tracked_objects, coord_transformations)
|
165 |
-
elif paths_drawer is not None:
|
166 |
-
frame = paths_drawer.draw(frame, tracked_objects)
|
167 |
-
|
168 |
-
return frame
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
from typing import List, Optional, Union
|
3 |
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
+
from norfair import Detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
class YOLO:
|
|
|
42 |
return detections
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def yolo_detections_to_norfair_detections(
|
46 |
yolo_detections: torch.tensor, track_points: str = "centroid" # bbox or centroid
|
47 |
) -> List[Detection]:
|
|
|
67 |
norfair_detections.append(Detection(points=bbox, scores=scores))
|
68 |
|
69 |
return norfair_detections
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
custom_models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .Yolo import YOLO, yolo_detections_to_norfair_detections
|
models/.gitkeep → demo_utils/__init__.py
RENAMED
File without changes
|
demo_utils/configuration.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DISTANCE_THRESHOLD_BBOX: float = 3.33
|
2 |
+
DISTANCE_THRESHOLD_CENTROID: int = 30
|
3 |
+
MAX_DISTANCE: int = 10000
|
4 |
+
|
5 |
+
models_path = {"YoloV7": "custom_models/yolov7.pt", "YoloV7 Tiny": "custom_models/yolov7-tiny.pt"}
|
6 |
+
|
7 |
+
style = {"Bounding box": "bbox", "Centroid": "centroid"}
|
demo_utils/distance_function.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torchvision.ops.boxes as bops
|
4 |
+
|
5 |
+
from demo_utils.configuration import MAX_DISTANCE
|
6 |
+
|
7 |
+
|
8 |
+
def euclidean_distance(detection, tracked_object):
|
9 |
+
return np.linalg.norm(detection.points - tracked_object.estimate)
|
10 |
+
|
11 |
+
|
12 |
+
def iou_pytorch(detection, tracked_object):
|
13 |
+
# Slower but simplier version of iou
|
14 |
+
|
15 |
+
detection_points = np.concatenate([detection.points[0], detection.points[1]])
|
16 |
+
tracked_object_points = np.concatenate([tracked_object.estimate[0], tracked_object.estimate[1]])
|
17 |
+
|
18 |
+
box_a = torch.tensor([detection_points], dtype=torch.float)
|
19 |
+
box_b = torch.tensor([tracked_object_points], dtype=torch.float)
|
20 |
+
iou = bops.box_iou(box_a, box_b)
|
21 |
+
|
22 |
+
# Since 0 <= IoU <= 1, we define 1/IoU as a distance.
|
23 |
+
# Distance values will be in [1, inf)
|
24 |
+
return np.float(1 / iou if iou else MAX_DISTANCE)
|
25 |
+
|
26 |
+
|
27 |
+
def iou(detection, tracked_object):
|
28 |
+
# Detection points will be box A
|
29 |
+
# Tracked objects point will be box B.
|
30 |
+
|
31 |
+
box_a = np.concatenate([detection.points[0], detection.points[1]])
|
32 |
+
box_b = np.concatenate([tracked_object.estimate[0], tracked_object.estimate[1]])
|
33 |
+
|
34 |
+
x_a = max(box_a[0], box_b[0])
|
35 |
+
y_a = max(box_a[1], box_b[1])
|
36 |
+
x_b = min(box_a[2], box_b[2])
|
37 |
+
y_b = min(box_a[3], box_b[3])
|
38 |
+
|
39 |
+
# Compute the area of intersection rectangle
|
40 |
+
inter_area = max(0, x_b - x_a + 1) * max(0, y_b - y_a + 1)
|
41 |
+
|
42 |
+
# Compute the area of both the prediction and tracker
|
43 |
+
# rectangles
|
44 |
+
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
45 |
+
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
46 |
+
|
47 |
+
# Compute the intersection over union by taking the intersection
|
48 |
+
# area and dividing it by the sum of prediction + tracker
|
49 |
+
# areas - the interesection area
|
50 |
+
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
51 |
+
|
52 |
+
# Since 0 <= IoU <= 1, we define 1/IoU as a distance.
|
53 |
+
# Distance values will be in [1, inf)
|
54 |
+
return 1 / iou if iou else (MAX_DISTANCE)
|
demo_utils/draw.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import norfair
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def draw(
|
6 |
+
paths_drawer,
|
7 |
+
track_points,
|
8 |
+
frame,
|
9 |
+
detections,
|
10 |
+
tracked_objects,
|
11 |
+
coord_transformations,
|
12 |
+
fix_paths,
|
13 |
+
):
|
14 |
+
if track_points == "centroid":
|
15 |
+
norfair.draw_points(frame, detections)
|
16 |
+
norfair.draw_tracked_objects(frame, tracked_objects)
|
17 |
+
elif track_points == "bbox":
|
18 |
+
norfair.draw_boxes(frame, detections)
|
19 |
+
norfair.draw_tracked_boxes(frame, tracked_objects)
|
20 |
+
|
21 |
+
if fix_paths:
|
22 |
+
frame = paths_drawer.draw(frame, tracked_objects, coord_transformations)
|
23 |
+
elif paths_drawer is not None:
|
24 |
+
frame = paths_drawer.draw(frame, tracked_objects)
|
25 |
+
|
26 |
+
return frame
|
27 |
+
|
28 |
+
|
29 |
+
def center(points):
|
30 |
+
return [np.mean(np.array(points), axis=0)]
|
demo_utils/files.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
def clean_videos(path: str):
|
6 |
+
# Remove past videos
|
7 |
+
files = glob.glob(f"{path}/*")
|
8 |
+
for file in files:
|
9 |
+
if file.endswith(".mp4"):
|
10 |
+
os.remove(file)
|
inference.py
CHANGED
@@ -3,31 +3,25 @@ import glob
|
|
3 |
import os
|
4 |
|
5 |
import numpy as np
|
6 |
-
from norfair import AbsolutePaths,
|
7 |
from norfair.camera_motion import HomographyTransformationGetter, MotionEstimator
|
8 |
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
draw,
|
14 |
-
euclidean_distance,
|
15 |
-
iou,
|
16 |
models_path,
|
17 |
style,
|
18 |
-
yolo_detections_to_norfair_detections,
|
19 |
)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
MAX_DISTANCE: int = 10000
|
24 |
|
25 |
|
26 |
def inference(
|
27 |
input_video: str,
|
28 |
model: str,
|
29 |
-
|
30 |
-
drawing_paths: bool,
|
31 |
track_points: str,
|
32 |
model_threshold: str,
|
33 |
):
|
@@ -42,6 +36,14 @@ def inference(
|
|
42 |
model = YOLO(models_path[model])
|
43 |
video = Video(input_path=input_video, output_path=output_path)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
if motion_estimation and drawing_paths:
|
46 |
fix_paths = True
|
47 |
|
@@ -56,6 +58,7 @@ def inference(
|
|
56 |
distance_threshold = (
|
57 |
DISTANCE_THRESHOLD_BBOX if track_points == "bbox" else DISTANCE_THRESHOLD_CENTROID
|
58 |
)
|
|
|
59 |
tracker = Tracker(
|
60 |
distance_function=distance_function,
|
61 |
distance_threshold=distance_threshold,
|
|
|
3 |
import os
|
4 |
|
5 |
import numpy as np
|
6 |
+
from norfair import AbsolutePaths, Paths, Tracker, Video
|
7 |
from norfair.camera_motion import HomographyTransformationGetter, MotionEstimator
|
8 |
|
9 |
+
from custom_models import YOLO, yolo_detections_to_norfair_detections
|
10 |
+
from demo_utils.configuration import (
|
11 |
+
DISTANCE_THRESHOLD_BBOX,
|
12 |
+
DISTANCE_THRESHOLD_CENTROID,
|
|
|
|
|
|
|
13 |
models_path,
|
14 |
style,
|
|
|
15 |
)
|
16 |
+
from demo_utils.distance_function import euclidean_distance, iou
|
17 |
+
from demo_utils.draw import center, draw
|
18 |
+
from demo_utils.files import clean_videos
|
|
|
19 |
|
20 |
|
21 |
def inference(
|
22 |
input_video: str,
|
23 |
model: str,
|
24 |
+
features: str,
|
|
|
25 |
track_points: str,
|
26 |
model_threshold: str,
|
27 |
):
|
|
|
36 |
model = YOLO(models_path[model])
|
37 |
video = Video(input_path=input_video, output_path=output_path)
|
38 |
|
39 |
+
motion_estimation = len(features) > 0 and (
|
40 |
+
features[0] == 0 or (len(features) > 1 and features[1] == 0)
|
41 |
+
)
|
42 |
+
|
43 |
+
drawing_paths = len(features) > 0 and (
|
44 |
+
features[0] == 1 or (len(features) > 1 and features[1] == 1)
|
45 |
+
)
|
46 |
+
|
47 |
if motion_estimation and drawing_paths:
|
48 |
fix_paths = True
|
49 |
|
|
|
58 |
distance_threshold = (
|
59 |
DISTANCE_THRESHOLD_BBOX if track_points == "bbox" else DISTANCE_THRESHOLD_CENTROID
|
60 |
)
|
61 |
+
|
62 |
tracker = Tracker(
|
63 |
distance_function=distance_function,
|
64 |
distance_threshold=distance_threshold,
|