Spaces:
Runtime error
Runtime error
Diego Fernandez
commited on
Commit
•
fca2efd
1
Parent(s):
bd2ff06
feat: initial version
Browse files- .gitignore +156 -0
- app.py +17 -3
- inference.py +102 -0
- inference_utils.py +163 -0
.gitignore
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# Models
|
156 |
+
*.pt
|
app.py
CHANGED
@@ -1,8 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
8 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from inference import inference
|
4 |
|
5 |
+
dd_model = gr.Dropdown(choices=["YoloV7"], value="YoloV7", label="Model")
|
6 |
+
|
7 |
+
cb_motion_estimation = gr.Checkbox(value=True, label="Motion estimation")
|
8 |
+
|
9 |
+
cb_path_draw = gr.Checkbox(value=True, label="Drawing paths")
|
10 |
+
|
11 |
+
dd_track_points = gr.Dropdown(
|
12 |
+
choices=["Boxes", "Centroid"], value="Boxes", label="Detections style"
|
13 |
+
)
|
14 |
+
|
15 |
+
slide_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Model confidence threshold")
|
16 |
+
|
17 |
+
inputs = ["video", dd_model, cb_motion_estimation, cb_path_draw, dd_track_points, slide_threshold]
|
18 |
+
outputs = "playablevideo"
|
19 |
+
|
20 |
+
iface = gr.Interface(fn=inference, inputs=inputs, outputs=outputs)
|
21 |
|
|
|
22 |
iface.launch()
|
inference.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from inference_utils import (
|
8 |
+
YOLO,
|
9 |
+
ModelsPath,
|
10 |
+
Style,
|
11 |
+
center,
|
12 |
+
clean_videos,
|
13 |
+
draw,
|
14 |
+
euclidean_distance,
|
15 |
+
iou,
|
16 |
+
yolo_detections_to_norfair_detections,
|
17 |
+
)
|
18 |
+
from norfair.norfair import Paths, Tracker, Video
|
19 |
+
from norfair.norfair.camera_motion import (
|
20 |
+
HomographyTransformationGetter,
|
21 |
+
MotionEstimator,
|
22 |
+
)
|
23 |
+
|
24 |
+
DISTANCE_THRESHOLD_BBOX: float = 3.33
|
25 |
+
DISTANCE_THRESHOLD_CENTROID: int = 30
|
26 |
+
MAX_DISTANCE: int = 10000
|
27 |
+
|
28 |
+
parser = argparse.ArgumentParser(description="Track objects in a video.")
|
29 |
+
parser.add_argument("--img-size", type=int, default="720", help="YOLOv7 inference size (pixels)")
|
30 |
+
parser.add_argument(
|
31 |
+
"--iou-threshold", type=float, default="0.45", help="YOLOv7 IOU threshold for NMS"
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--classes", nargs="+", type=int, help="Filter by class: --classes 0, or --classes 0 2 3"
|
35 |
+
)
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
|
39 |
+
def inference(
|
40 |
+
input_video: str,
|
41 |
+
model: str,
|
42 |
+
motion_estimation: bool,
|
43 |
+
drawing_paths: bool,
|
44 |
+
track_points: str,
|
45 |
+
model_threshold: str,
|
46 |
+
):
|
47 |
+
clean_videos("tmp")
|
48 |
+
|
49 |
+
coord_transformations = None
|
50 |
+
paths_drawer = None
|
51 |
+
track_points = Style[track_points].value
|
52 |
+
model = YOLO(ModelsPath[model].value, device="cuda")
|
53 |
+
video = Video(input_path=input_video, output_path="tmp")
|
54 |
+
|
55 |
+
if motion_estimation:
|
56 |
+
transformations_getter = HomographyTransformationGetter()
|
57 |
+
|
58 |
+
motion_estimator = MotionEstimator(
|
59 |
+
max_points=500,
|
60 |
+
min_distance=7,
|
61 |
+
transformations_getter=transformations_getter,
|
62 |
+
draw_flow=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
distance_function = iou if track_points == "bbox" else euclidean_distance
|
66 |
+
distance_threshold = (
|
67 |
+
DISTANCE_THRESHOLD_BBOX if track_points == "bbox" else DISTANCE_THRESHOLD_CENTROID
|
68 |
+
)
|
69 |
+
tracker = Tracker(
|
70 |
+
distance_function=distance_function,
|
71 |
+
distance_threshold=distance_threshold,
|
72 |
+
)
|
73 |
+
|
74 |
+
if drawing_paths:
|
75 |
+
paths_drawer = Paths(center, attenuation=0.01)
|
76 |
+
|
77 |
+
for frame in video:
|
78 |
+
yolo_detections = model(
|
79 |
+
frame,
|
80 |
+
conf_threshold=model_threshold,
|
81 |
+
iou_threshold=args.iou_threshold,
|
82 |
+
image_size=720,
|
83 |
+
classes=args.classes,
|
84 |
+
)
|
85 |
+
|
86 |
+
mask = np.ones(frame.shape[:2], frame.dtype)
|
87 |
+
|
88 |
+
if motion_estimation:
|
89 |
+
coord_transformations = motion_estimator.update(frame, mask)
|
90 |
+
|
91 |
+
detections = yolo_detections_to_norfair_detections(
|
92 |
+
yolo_detections, track_points=track_points
|
93 |
+
)
|
94 |
+
|
95 |
+
tracked_objects = tracker.update(
|
96 |
+
detections=detections, coord_transformations=coord_transformations
|
97 |
+
)
|
98 |
+
|
99 |
+
frame = draw(paths_drawer, track_points, frame, detections, tracked_objects)
|
100 |
+
video.write(frame)
|
101 |
+
|
102 |
+
return f"{input_video[1:-4]}_out.mp4"
|
inference_utils.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
from enum import Enum
|
5 |
+
from typing import List, Optional, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchvision.ops.boxes as bops
|
10 |
+
|
11 |
+
from norfair import norfair
|
12 |
+
from norfair.norfair import Detection
|
13 |
+
|
14 |
+
DISTANCE_THRESHOLD_BBOX: float = 3.33
|
15 |
+
DISTANCE_THRESHOLD_CENTROID: int = 30
|
16 |
+
MAX_DISTANCE: int = 10000
|
17 |
+
|
18 |
+
|
19 |
+
class ModelsPath(Enum):
|
20 |
+
YoloV7 = "models/yolov7.pt"
|
21 |
+
|
22 |
+
|
23 |
+
class Style(Enum):
|
24 |
+
Boxes = "bbox"
|
25 |
+
Centroid = "centroid"
|
26 |
+
|
27 |
+
|
28 |
+
class YOLO:
|
29 |
+
def __init__(self, model_path: str, device: Optional[str] = None):
|
30 |
+
if device is not None and "cuda" in device and not torch.cuda.is_available():
|
31 |
+
raise Exception("Selected device='cuda', but cuda is not available to Pytorch.")
|
32 |
+
# automatically set device if its None
|
33 |
+
elif device is None:
|
34 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
35 |
+
|
36 |
+
if not os.path.exists(model_path):
|
37 |
+
os.system(
|
38 |
+
f"wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/{os.path.basename(model_path)} -O {model_path}"
|
39 |
+
)
|
40 |
+
|
41 |
+
# load model
|
42 |
+
try:
|
43 |
+
self.model = torch.hub.load("WongKinYiu/yolov7", "custom", model_path)
|
44 |
+
except:
|
45 |
+
raise Exception("Failed to load model from {}".format(model_path))
|
46 |
+
|
47 |
+
def __call__(
|
48 |
+
self,
|
49 |
+
img: Union[str, np.ndarray],
|
50 |
+
conf_threshold: float = 0.25,
|
51 |
+
iou_threshold: float = 0.45,
|
52 |
+
image_size: int = 720,
|
53 |
+
classes: Optional[List[int]] = None,
|
54 |
+
) -> torch.tensor:
|
55 |
+
|
56 |
+
self.model.conf = conf_threshold
|
57 |
+
self.model.iou = iou_threshold
|
58 |
+
if classes is not None:
|
59 |
+
self.model.classes = classes
|
60 |
+
detections = self.model(img, size=image_size)
|
61 |
+
return detections
|
62 |
+
|
63 |
+
|
64 |
+
def euclidean_distance(detection, tracked_object):
|
65 |
+
return np.linalg.norm(detection.points - tracked_object.estimate)
|
66 |
+
|
67 |
+
|
68 |
+
def center(points):
|
69 |
+
return [np.mean(np.array(points), axis=0)]
|
70 |
+
|
71 |
+
|
72 |
+
def iou_pytorch(detection, tracked_object):
|
73 |
+
# Slower but simplier version of iou
|
74 |
+
|
75 |
+
detection_points = np.concatenate([detection.points[0], detection.points[1]])
|
76 |
+
tracked_object_points = np.concatenate([tracked_object.estimate[0], tracked_object.estimate[1]])
|
77 |
+
|
78 |
+
box_a = torch.tensor([detection_points], dtype=torch.float)
|
79 |
+
box_b = torch.tensor([tracked_object_points], dtype=torch.float)
|
80 |
+
iou = bops.box_iou(box_a, box_b)
|
81 |
+
|
82 |
+
# Since 0 <= IoU <= 1, we define 1/IoU as a distance.
|
83 |
+
# Distance values will be in [1, inf)
|
84 |
+
return np.float(1 / iou if iou else MAX_DISTANCE)
|
85 |
+
|
86 |
+
|
87 |
+
def iou(detection, tracked_object):
|
88 |
+
# Detection points will be box A
|
89 |
+
# Tracked objects point will be box B.
|
90 |
+
|
91 |
+
box_a = np.concatenate([detection.points[0], detection.points[1]])
|
92 |
+
box_b = np.concatenate([tracked_object.estimate[0], tracked_object.estimate[1]])
|
93 |
+
|
94 |
+
x_a = max(box_a[0], box_b[0])
|
95 |
+
y_a = max(box_a[1], box_b[1])
|
96 |
+
x_b = min(box_a[2], box_b[2])
|
97 |
+
y_b = min(box_a[3], box_b[3])
|
98 |
+
|
99 |
+
# Compute the area of intersection rectangle
|
100 |
+
inter_area = max(0, x_b - x_a + 1) * max(0, y_b - y_a + 1)
|
101 |
+
|
102 |
+
# Compute the area of both the prediction and tracker
|
103 |
+
# rectangles
|
104 |
+
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
105 |
+
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
106 |
+
|
107 |
+
# Compute the intersection over union by taking the intersection
|
108 |
+
# area and dividing it by the sum of prediction + tracker
|
109 |
+
# areas - the interesection area
|
110 |
+
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
111 |
+
|
112 |
+
# Since 0 <= IoU <= 1, we define 1/IoU as a distance.
|
113 |
+
# Distance values will be in [1, inf)
|
114 |
+
return 1 / iou if iou else (MAX_DISTANCE)
|
115 |
+
|
116 |
+
|
117 |
+
def yolo_detections_to_norfair_detections(
|
118 |
+
yolo_detections: torch.tensor, track_points: str = "centroid" # bbox or centroid
|
119 |
+
) -> List[Detection]:
|
120 |
+
"""convert detections_as_xywh to norfair detections"""
|
121 |
+
norfair_detections: List[Detection] = []
|
122 |
+
|
123 |
+
if track_points == "centroid":
|
124 |
+
detections_as_xywh = yolo_detections.xywh[0]
|
125 |
+
for detection_as_xywh in detections_as_xywh:
|
126 |
+
centroid = np.array([detection_as_xywh[0].item(), detection_as_xywh[1].item()])
|
127 |
+
scores = np.array([detection_as_xywh[4].item()])
|
128 |
+
norfair_detections.append(Detection(points=centroid, scores=scores))
|
129 |
+
elif track_points == "bbox":
|
130 |
+
detections_as_xyxy = yolo_detections.xyxy[0]
|
131 |
+
for detection_as_xyxy in detections_as_xyxy:
|
132 |
+
bbox = np.array(
|
133 |
+
[
|
134 |
+
[detection_as_xyxy[0].item(), detection_as_xyxy[1].item()],
|
135 |
+
[detection_as_xyxy[2].item(), detection_as_xyxy[3].item()],
|
136 |
+
]
|
137 |
+
)
|
138 |
+
scores = np.array([detection_as_xyxy[4].item(), detection_as_xyxy[4].item()])
|
139 |
+
norfair_detections.append(Detection(points=bbox, scores=scores))
|
140 |
+
|
141 |
+
return norfair_detections
|
142 |
+
|
143 |
+
|
144 |
+
def clean_videos(path: str):
|
145 |
+
# Remove past videos
|
146 |
+
files = glob.glob(f"{path}/*")
|
147 |
+
for file in files:
|
148 |
+
if file.endswith(".mp4"):
|
149 |
+
os.remove(file)
|
150 |
+
|
151 |
+
|
152 |
+
def draw(paths_drawer, track_points, frame, detections, tracked_objects):
|
153 |
+
if track_points == "centroid":
|
154 |
+
norfair.draw_points(frame, detections)
|
155 |
+
norfair.draw_tracked_objects(frame, tracked_objects)
|
156 |
+
elif track_points == "bbox":
|
157 |
+
norfair.draw_boxes(frame, detections)
|
158 |
+
norfair.draw_tracked_boxes(frame, tracked_objects)
|
159 |
+
|
160 |
+
if paths_drawer is not None:
|
161 |
+
frame = paths_drawer.draw(frame, tracked_objects)
|
162 |
+
|
163 |
+
return frame
|