import os import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa # Check if CUDA is available and set the device device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load model and processor token = os.getenv("HF_TOKEN") processor = WhisperProcessor.from_pretrained("jiviai/audioX-south-v1") model = WhisperForConditionalGeneration.from_pretrained("jiviai/audioX-south-v1").to(device) model.config.forced_decoder_ids = None # Load and preprocess audio audio_path = "sample.wav" audio_np, sr = librosa.load(audio_path, sr=None) if sr != 16000: audio_np = librosa.resample(audio_np, orig_sr=sr, target_sr=16000) input_features = processor(audio_np, sampling_rate=16000, return_tensors="pt").to(device).input_features # Generate predictions # Use ISO 639-1 language codes: "hi", "mr", "gu" for North; "ta", "te", "kn", "ml" for South # Or omit the language argument for automatic language detection predicted_ids = model.generate(input_features, task="transcribe", language="ta") # Decode predictions transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] print(transcription)