Spaces:
Runtime error
Runtime error
Duplicate from nightfury/Colorizer_Models
Browse filesCo-authored-by: spartan <[email protected]>
- .gitattributes +31 -0
- README.md +14 -0
- app.py +143 -0
- colorizers/__init__.py +6 -0
- colorizers/__pycache__/__init__.cpython-310.pyc +0 -0
- colorizers/__pycache__/__init__.cpython-37.pyc +0 -0
- colorizers/__pycache__/base_color.cpython-310.pyc +0 -0
- colorizers/__pycache__/base_color.cpython-37.pyc +0 -0
- colorizers/__pycache__/eccv16.cpython-310.pyc +0 -0
- colorizers/__pycache__/eccv16.cpython-37.pyc +0 -0
- colorizers/__pycache__/siggraph17.cpython-310.pyc +0 -0
- colorizers/__pycache__/siggraph17.cpython-37.pyc +0 -0
- colorizers/__pycache__/util.cpython-310.pyc +0 -0
- colorizers/__pycache__/util.cpython-37.pyc +0 -0
- colorizers/base_color.py +24 -0
- colorizers/eccv16.py +105 -0
- colorizers/siggraph17.py +168 -0
- colorizers/util.py +47 -0
- requirements.txt +5 -0
.gitattributes
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Colorizer Models
|
3 |
+
emoji: 🌈🎨
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: orange
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.5
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: bsd-2-clause
|
11 |
+
duplicated_from: nightfury/Colorizer_Models
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import colorizers as c
|
4 |
+
|
5 |
+
from colorizers.util import postprocess_tens, preprocess_img
|
6 |
+
|
7 |
+
def interface(image, model: str = "eccv16"):
|
8 |
+
if model == "eccv16":
|
9 |
+
img = c.eccv16(pretrained=True).eval()
|
10 |
+
else:
|
11 |
+
img = c.siggraph17(pretrained=True).eval()
|
12 |
+
oimg = np.asarray(image)
|
13 |
+
if(oimg.ndim == 2):
|
14 |
+
oimg = np.tile(oimg[:,:,None], 3)
|
15 |
+
(tens_l_orig, tens_l_rs) = preprocess_img(oimg)
|
16 |
+
|
17 |
+
output_img = postprocess_tens(
|
18 |
+
tens_l_orig,
|
19 |
+
img(tens_l_rs).cpu()
|
20 |
+
)
|
21 |
+
return output_img
|
22 |
+
|
23 |
+
css='''
|
24 |
+
.Box {
|
25 |
+
background-color: var(--color-canvas-default);
|
26 |
+
border-color: var(--color-border-default);
|
27 |
+
border-style: solid;
|
28 |
+
border-width: 1px;
|
29 |
+
border-radius: 6px;
|
30 |
+
}
|
31 |
+
.d-flex {
|
32 |
+
display: flex !important;
|
33 |
+
}
|
34 |
+
.flex-md-row {
|
35 |
+
flex-direction: row !important;
|
36 |
+
}
|
37 |
+
.flex-column {
|
38 |
+
flex-direction: column !important;
|
39 |
+
}
|
40 |
+
'''
|
41 |
+
title = "Image Colorization Using AI Models"
|
42 |
+
description = r"""<center>An automatic colorization functionality for Real-Time User-Guided Image Colorization with Learned Deep Priors,ECCV16 & SIGGRAPH 2017 Models!<br>
|
43 |
+
Practically the algorithm is used to COLORIZE your **old BLACK & WHITE / GRAYSCALE photos**.<br>
|
44 |
+
To use it, simply just upload the concerned image.<br>
|
45 |
+
"""
|
46 |
+
article = r"""
|
47 |
+
<p style='text-align: '> Given a grayscale photograph as input, this demo attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. A fully automatic approach has been proposed that produces vibrant and realistic colorizations. The underlying uncertainty of the problem was embraced by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. The algorithm is evaluated using a "colorization Turing test," asking human participants to choose between a generated and ground truth color image. The method used here successfully fools humans on 32% of the trials, significantly higher than other methodology used by the other photo automation tools. Moreover, the colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks. </p>
|
48 |
+
<img src="https://camo.githubusercontent.com/8f849fd53753e61659664d37849703d949209ec93957d1a2fd529be9772f7030/687474703a2f2f726963687a68616e672e6769746875622e696f2f636f6c6f72697a6174696f6e2f7265736f75726365732f696d616765732f746561736572342e6a7067" alt="Teaser Image" data-canonical-src="http://richzhang.github.io/colorization/resources/images/teaser4.jpg" style="max-width: 100%;">
|
49 |
+
<p>
|
50 |
+
<img class="round" style="height:275px" src="http://richzhang.github.io/colorization/resources/images/net_diagram.jpg">
|
51 |
+
</p>
|
52 |
+
<div class="footer">
|
53 |
+
<p>Built by <a href="" style="text-decoration: underline;" target="_blank">Dushyantsinh Jadeja</a> & the Model being used in here is from <a href="https://github.com/richzhang/colorization" style="text-decoration: underline;" target="_blank">richzhang</a> - Gradio Demo by 🤗 Hugging Face </p>
|
54 |
+
</div>
|
55 |
+
<div class="acknowledgments">
|
56 |
+
<p>
|
57 |
+
<h4>LICENSE</h4>
|
58 |
+
</p>
|
59 |
+
<h3 class="mt-0 mb-2 h4">BSD 2-Clause "Simplified" License</h3>
|
60 |
+
<h4 class="mt-1 mb-2 h5">Permissions</h4>
|
61 |
+
<ul class="list-style-none">
|
62 |
+
<li class="text-small pl-3">
|
63 |
+
<svg width="13" class="octicon octicon-check color-fg-success ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
64 |
+
<path fill-rule="evenodd" d="M13.78 4.22a.75.75 0 010 1.06l-7.25 7.25a.75.75 0 01-1.06 0L2.22 9.28a.75.75 0 011.06-1.06L6 10.94l6.72-6.72a.75.75 0 011.06 0z"></path>
|
65 |
+
</svg>
|
66 |
+
<span class="v-align-middle" title="The licensed material and derivatives may be used for commercial purposes."> Commercial use </span>
|
67 |
+
</li>
|
68 |
+
<li class="text-small pl-3">
|
69 |
+
<svg width="13" class="octicon octicon-check color-fg-success ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
70 |
+
<path fill-rule="evenodd" d="M13.78 4.22a.75.75 0 010 1.06l-7.25 7.25a.75.75 0 01-1.06 0L2.22 9.28a.75.75 0 011.06-1.06L6 10.94l6.72-6.72a.75.75 0 011.06 0z"></path>
|
71 |
+
</svg>
|
72 |
+
<span class="v-align-middle" title="The licensed material may be modified."> Modification </span>
|
73 |
+
</li>
|
74 |
+
<li class="text-small pl-3">
|
75 |
+
<svg width="13" class="octicon octicon-check color-fg-success ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
76 |
+
<path fill-rule="evenodd" d="M13.78 4.22a.75.75 0 010 1.06l-7.25 7.25a.75.75 0 01-1.06 0L2.22 9.28a.75.75 0 011.06-1.06L6 10.94l6.72-6.72a.75.75 0 011.06 0z"></path>
|
77 |
+
</svg>
|
78 |
+
<span class="v-align-middle" title="The licensed material may be distributed."> Distribution </span>
|
79 |
+
</li>
|
80 |
+
<li class="text-small pl-3">
|
81 |
+
<svg width="13" class="octicon octicon-check color-fg-success ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
82 |
+
<path fill-rule="evenodd" d="M13.78 4.22a.75.75 0 010 1.06l-7.25 7.25a.75.75 0 01-1.06 0L2.22 9.28a.75.75 0 011.06-1.06L6 10.94l6.72-6.72a.75.75 0 011.06 0z"></path>
|
83 |
+
</svg>
|
84 |
+
<span class="v-align-middle" title="The licensed material may be used and modified in private."> Private use </span>
|
85 |
+
</li>
|
86 |
+
</ul>
|
87 |
+
<h4 class="mt-1 mb-2 h5">Limitations</h4>
|
88 |
+
<ul class="list-style-none">
|
89 |
+
<li class="text-small pl-3">
|
90 |
+
<svg width="13" class="octicon octicon-x color-fg-danger ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
91 |
+
<path fill-rule="evenodd" d="M3.72 3.72a.75.75 0 011.06 0L8 6.94l3.22-3.22a.75.75 0 111.06 1.06L9.06 8l3.22 3.22a.75.75 0 11-1.06 1.06L8 9.06l-3.22 3.22a.75.75 0 01-1.06-1.06L6.94 8 3.72 4.78a.75.75 0 010-1.06z"></path>
|
92 |
+
</svg>
|
93 |
+
<span class="v-align-middle" title="This license includes a limitation of liability."> Liability </span>
|
94 |
+
</li>
|
95 |
+
<li class="text-small pl-3">
|
96 |
+
<svg width="13" class="octicon octicon-x color-fg-danger ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
97 |
+
<path fill-rule="evenodd" d="M3.72 3.72a.75.75 0 011.06 0L8 6.94l3.22-3.22a.75.75 0 111.06 1.06L9.06 8l3.22 3.22a.75.75 0 11-1.06 1.06L8 9.06l-3.22 3.22a.75.75 0 01-1.06-1.06L6.94 8 3.72 4.78a.75.75 0 010-1.06z"></path>
|
98 |
+
</svg>
|
99 |
+
<span class="v-align-middle" title="This license explicitly states that it does NOT provide any warranty."> Warranty </span>
|
100 |
+
</li>
|
101 |
+
</ul>
|
102 |
+
<h4 class="mt-1 mb-2 h5">Conditions</h4>
|
103 |
+
<ul class="list-style-none">
|
104 |
+
<li class="text-small pl-3">
|
105 |
+
<svg width="13" class="octicon octicon-info color-fg-accent ml-n3 v-align-middle" viewBox="0 0 16 16" version="1.1" height="13" aria-hidden="true">
|
106 |
+
<path fill-rule="evenodd" d="M8 1.5a6.5 6.5 0 100 13 6.5 6.5 0 000-13zM0 8a8 8 0 1116 0A8 8 0 010 8zm6.5-.25A.75.75 0 017.25 7h1a.75.75 0 01.75.75v2.75h.25a.75.75 0 010 1.5h-2a.75.75 0 010-1.5h.25v-2h-.25a.75.75 0 01-.75-.75zM8 6a1 1 0 100-2 1 1 0 000 2z"></path>
|
107 |
+
</svg>
|
108 |
+
<span class="v-align-middle" title="A copy of the license and copyright notice must be included with the licensed material."> License and copyright notice </span>
|
109 |
+
</li>
|
110 |
+
</ul>
|
111 |
+
</div> For the full list of restrictions please <a href="https://github.dev/richzhang/colorization/blob/master/LICENSE" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a>
|
112 |
+
</p>
|
113 |
+
<br>
|
114 |
+
<center>
|
115 |
+
<img src='https://visitor-badge.glitch.me/badge?page_id=dj_colorization_eccv16siggraph17' alt='visitor badge'>
|
116 |
+
</center>
|
117 |
+
"""
|
118 |
+
|
119 |
+
#with gr.Interface(css=css) as mainBody:
|
120 |
+
gr.HTML("""<style>""" + css+ """</Style>""")
|
121 |
+
|
122 |
+
mainBody = gr.Interface(
|
123 |
+
interface,
|
124 |
+
[
|
125 |
+
gr.components.Image(type="pil", label="image"),
|
126 |
+
gr.components.Radio(
|
127 |
+
["eccv16", "siggraph17"],
|
128 |
+
type="value",
|
129 |
+
label="model"
|
130 |
+
)
|
131 |
+
],
|
132 |
+
[
|
133 |
+
gr.components.Image(label="output")
|
134 |
+
],
|
135 |
+
#inputs="sketchpad",
|
136 |
+
#outputs="label",
|
137 |
+
theme="huggingface",
|
138 |
+
title=title,
|
139 |
+
description=description,
|
140 |
+
article=article,
|
141 |
+
live=True,
|
142 |
+
)
|
143 |
+
mainBody.launch()
|
colorizers/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .base_color import *
|
3 |
+
from .eccv16 import *
|
4 |
+
from .siggraph17 import *
|
5 |
+
from .util import *
|
6 |
+
|
colorizers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (229 Bytes). View file
|
|
colorizers/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (285 Bytes). View file
|
|
colorizers/__pycache__/base_color.cpython-310.pyc
ADDED
Binary file (1.19 kB). View file
|
|
colorizers/__pycache__/base_color.cpython-37.pyc
ADDED
Binary file (1.24 kB). View file
|
|
colorizers/__pycache__/eccv16.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
colorizers/__pycache__/eccv16.cpython-37.pyc
ADDED
Binary file (3.26 kB). View file
|
|
colorizers/__pycache__/siggraph17.cpython-310.pyc
ADDED
Binary file (4.31 kB). View file
|
|
colorizers/__pycache__/siggraph17.cpython-37.pyc
ADDED
Binary file (4.36 kB). View file
|
|
colorizers/__pycache__/util.cpython-310.pyc
ADDED
Binary file (1.69 kB). View file
|
|
colorizers/__pycache__/util.cpython-37.pyc
ADDED
Binary file (1.71 kB). View file
|
|
colorizers/base_color.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class BaseColor(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(BaseColor, self).__init__()
|
8 |
+
|
9 |
+
self.l_cent = 50.
|
10 |
+
self.l_norm = 100.
|
11 |
+
self.ab_norm = 110.
|
12 |
+
|
13 |
+
def normalize_l(self, in_l):
|
14 |
+
return (in_l-self.l_cent)/self.l_norm
|
15 |
+
|
16 |
+
def unnormalize_l(self, in_l):
|
17 |
+
return in_l*self.l_norm + self.l_cent
|
18 |
+
|
19 |
+
def normalize_ab(self, in_ab):
|
20 |
+
return in_ab/self.ab_norm
|
21 |
+
|
22 |
+
def unnormalize_ab(self, in_ab):
|
23 |
+
return in_ab*self.ab_norm
|
24 |
+
|
colorizers/eccv16.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from IPython import embed
|
6 |
+
|
7 |
+
from .base_color import *
|
8 |
+
|
9 |
+
class ECCVGenerator(BaseColor):
|
10 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
11 |
+
super(ECCVGenerator, self).__init__()
|
12 |
+
|
13 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
14 |
+
model1+=[nn.ReLU(True),]
|
15 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
16 |
+
model1+=[nn.ReLU(True),]
|
17 |
+
model1+=[norm_layer(64),]
|
18 |
+
|
19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
20 |
+
model2+=[nn.ReLU(True),]
|
21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
22 |
+
model2+=[nn.ReLU(True),]
|
23 |
+
model2+=[norm_layer(128),]
|
24 |
+
|
25 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
26 |
+
model3+=[nn.ReLU(True),]
|
27 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
28 |
+
model3+=[nn.ReLU(True),]
|
29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
30 |
+
model3+=[nn.ReLU(True),]
|
31 |
+
model3+=[norm_layer(256),]
|
32 |
+
|
33 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
34 |
+
model4+=[nn.ReLU(True),]
|
35 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
36 |
+
model4+=[nn.ReLU(True),]
|
37 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
38 |
+
model4+=[nn.ReLU(True),]
|
39 |
+
model4+=[norm_layer(512),]
|
40 |
+
|
41 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
42 |
+
model5+=[nn.ReLU(True),]
|
43 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
44 |
+
model5+=[nn.ReLU(True),]
|
45 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
46 |
+
model5+=[nn.ReLU(True),]
|
47 |
+
model5+=[norm_layer(512),]
|
48 |
+
|
49 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
50 |
+
model6+=[nn.ReLU(True),]
|
51 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
52 |
+
model6+=[nn.ReLU(True),]
|
53 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
54 |
+
model6+=[nn.ReLU(True),]
|
55 |
+
model6+=[norm_layer(512),]
|
56 |
+
|
57 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
58 |
+
model7+=[nn.ReLU(True),]
|
59 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
60 |
+
model7+=[nn.ReLU(True),]
|
61 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
62 |
+
model7+=[nn.ReLU(True),]
|
63 |
+
model7+=[norm_layer(512),]
|
64 |
+
|
65 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
66 |
+
model8+=[nn.ReLU(True),]
|
67 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
68 |
+
model8+=[nn.ReLU(True),]
|
69 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
70 |
+
model8+=[nn.ReLU(True),]
|
71 |
+
|
72 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
73 |
+
|
74 |
+
self.model1 = nn.Sequential(*model1)
|
75 |
+
self.model2 = nn.Sequential(*model2)
|
76 |
+
self.model3 = nn.Sequential(*model3)
|
77 |
+
self.model4 = nn.Sequential(*model4)
|
78 |
+
self.model5 = nn.Sequential(*model5)
|
79 |
+
self.model6 = nn.Sequential(*model6)
|
80 |
+
self.model7 = nn.Sequential(*model7)
|
81 |
+
self.model8 = nn.Sequential(*model8)
|
82 |
+
|
83 |
+
self.softmax = nn.Softmax(dim=1)
|
84 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
85 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
86 |
+
|
87 |
+
def forward(self, input_l):
|
88 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
89 |
+
conv2_2 = self.model2(conv1_2)
|
90 |
+
conv3_3 = self.model3(conv2_2)
|
91 |
+
conv4_3 = self.model4(conv3_3)
|
92 |
+
conv5_3 = self.model5(conv4_3)
|
93 |
+
conv6_3 = self.model6(conv5_3)
|
94 |
+
conv7_3 = self.model7(conv6_3)
|
95 |
+
conv8_3 = self.model8(conv7_3)
|
96 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
97 |
+
|
98 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
99 |
+
|
100 |
+
def eccv16(pretrained=True):
|
101 |
+
model = ECCVGenerator()
|
102 |
+
if(pretrained):
|
103 |
+
import torch.utils.model_zoo as model_zoo
|
104 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True))
|
105 |
+
return model
|
colorizers/siggraph17.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .base_color import *
|
5 |
+
|
6 |
+
class SIGGRAPHGenerator(BaseColor):
|
7 |
+
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
|
8 |
+
super(SIGGRAPHGenerator, self).__init__()
|
9 |
+
|
10 |
+
# Conv1
|
11 |
+
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
12 |
+
model1+=[nn.ReLU(True),]
|
13 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
14 |
+
model1+=[nn.ReLU(True),]
|
15 |
+
model1+=[norm_layer(64),]
|
16 |
+
# add a subsampling operation
|
17 |
+
|
18 |
+
# Conv2
|
19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
20 |
+
model2+=[nn.ReLU(True),]
|
21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
22 |
+
model2+=[nn.ReLU(True),]
|
23 |
+
model2+=[norm_layer(128),]
|
24 |
+
# add a subsampling layer operation
|
25 |
+
|
26 |
+
# Conv3
|
27 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
28 |
+
model3+=[nn.ReLU(True),]
|
29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
30 |
+
model3+=[nn.ReLU(True),]
|
31 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
32 |
+
model3+=[nn.ReLU(True),]
|
33 |
+
model3+=[norm_layer(256),]
|
34 |
+
# add a subsampling layer operation
|
35 |
+
|
36 |
+
# Conv4
|
37 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
38 |
+
model4+=[nn.ReLU(True),]
|
39 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
40 |
+
model4+=[nn.ReLU(True),]
|
41 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
42 |
+
model4+=[nn.ReLU(True),]
|
43 |
+
model4+=[norm_layer(512),]
|
44 |
+
|
45 |
+
# Conv5
|
46 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
47 |
+
model5+=[nn.ReLU(True),]
|
48 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
49 |
+
model5+=[nn.ReLU(True),]
|
50 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
51 |
+
model5+=[nn.ReLU(True),]
|
52 |
+
model5+=[norm_layer(512),]
|
53 |
+
|
54 |
+
# Conv6
|
55 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
56 |
+
model6+=[nn.ReLU(True),]
|
57 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
58 |
+
model6+=[nn.ReLU(True),]
|
59 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
60 |
+
model6+=[nn.ReLU(True),]
|
61 |
+
model6+=[norm_layer(512),]
|
62 |
+
|
63 |
+
# Conv7
|
64 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
65 |
+
model7+=[nn.ReLU(True),]
|
66 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
67 |
+
model7+=[nn.ReLU(True),]
|
68 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
69 |
+
model7+=[nn.ReLU(True),]
|
70 |
+
model7+=[norm_layer(512),]
|
71 |
+
|
72 |
+
# Conv7
|
73 |
+
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
|
74 |
+
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
75 |
+
|
76 |
+
model8=[nn.ReLU(True),]
|
77 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
78 |
+
model8+=[nn.ReLU(True),]
|
79 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
80 |
+
model8+=[nn.ReLU(True),]
|
81 |
+
model8+=[norm_layer(256),]
|
82 |
+
|
83 |
+
# Conv9
|
84 |
+
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
85 |
+
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
86 |
+
# add the two feature maps above
|
87 |
+
|
88 |
+
model9=[nn.ReLU(True),]
|
89 |
+
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
90 |
+
model9+=[nn.ReLU(True),]
|
91 |
+
model9+=[norm_layer(128),]
|
92 |
+
|
93 |
+
# Conv10
|
94 |
+
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
95 |
+
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
96 |
+
# add the two feature maps above
|
97 |
+
|
98 |
+
model10=[nn.ReLU(True),]
|
99 |
+
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
|
100 |
+
model10+=[nn.LeakyReLU(negative_slope=.2),]
|
101 |
+
|
102 |
+
# classification output
|
103 |
+
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
104 |
+
|
105 |
+
# regression output
|
106 |
+
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
107 |
+
model_out+=[nn.Tanh()]
|
108 |
+
|
109 |
+
self.model1 = nn.Sequential(*model1)
|
110 |
+
self.model2 = nn.Sequential(*model2)
|
111 |
+
self.model3 = nn.Sequential(*model3)
|
112 |
+
self.model4 = nn.Sequential(*model4)
|
113 |
+
self.model5 = nn.Sequential(*model5)
|
114 |
+
self.model6 = nn.Sequential(*model6)
|
115 |
+
self.model7 = nn.Sequential(*model7)
|
116 |
+
self.model8up = nn.Sequential(*model8up)
|
117 |
+
self.model8 = nn.Sequential(*model8)
|
118 |
+
self.model9up = nn.Sequential(*model9up)
|
119 |
+
self.model9 = nn.Sequential(*model9)
|
120 |
+
self.model10up = nn.Sequential(*model10up)
|
121 |
+
self.model10 = nn.Sequential(*model10)
|
122 |
+
self.model3short8 = nn.Sequential(*model3short8)
|
123 |
+
self.model2short9 = nn.Sequential(*model2short9)
|
124 |
+
self.model1short10 = nn.Sequential(*model1short10)
|
125 |
+
|
126 |
+
self.model_class = nn.Sequential(*model_class)
|
127 |
+
self.model_out = nn.Sequential(*model_out)
|
128 |
+
|
129 |
+
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
|
130 |
+
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])
|
131 |
+
|
132 |
+
def forward(self, input_A, input_B=None, mask_B=None):
|
133 |
+
if(input_B is None):
|
134 |
+
input_B = torch.cat((input_A*0, input_A*0), dim=1)
|
135 |
+
if(mask_B is None):
|
136 |
+
mask_B = input_A*0
|
137 |
+
|
138 |
+
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
|
139 |
+
conv2_2 = self.model2(conv1_2[:,:,::2,::2])
|
140 |
+
conv3_3 = self.model3(conv2_2[:,:,::2,::2])
|
141 |
+
conv4_3 = self.model4(conv3_3[:,:,::2,::2])
|
142 |
+
conv5_3 = self.model5(conv4_3)
|
143 |
+
conv6_3 = self.model6(conv5_3)
|
144 |
+
conv7_3 = self.model7(conv6_3)
|
145 |
+
|
146 |
+
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
|
147 |
+
conv8_3 = self.model8(conv8_up)
|
148 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
149 |
+
conv9_3 = self.model9(conv9_up)
|
150 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
151 |
+
conv10_2 = self.model10(conv10_up)
|
152 |
+
out_reg = self.model_out(conv10_2)
|
153 |
+
|
154 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
155 |
+
conv9_3 = self.model9(conv9_up)
|
156 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
157 |
+
conv10_2 = self.model10(conv10_up)
|
158 |
+
out_reg = self.model_out(conv10_2)
|
159 |
+
|
160 |
+
return self.unnormalize_ab(out_reg)
|
161 |
+
|
162 |
+
def siggraph17(pretrained=True):
|
163 |
+
model = SIGGRAPHGenerator()
|
164 |
+
if(pretrained):
|
165 |
+
import torch.utils.model_zoo as model_zoo
|
166 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
|
167 |
+
return model
|
168 |
+
|
colorizers/util.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from skimage import color
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from IPython import embed
|
8 |
+
|
9 |
+
def load_img(img_path):
|
10 |
+
out_np = np.asarray(Image.open(img_path))
|
11 |
+
if(out_np.ndim==2):
|
12 |
+
out_np = np.tile(out_np[:,:,None],3)
|
13 |
+
return out_np
|
14 |
+
|
15 |
+
def resize_img(img, HW=(256,256), resample=3):
|
16 |
+
return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample))
|
17 |
+
|
18 |
+
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3):
|
19 |
+
# return original size L and resized L as torch Tensors
|
20 |
+
img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample)
|
21 |
+
|
22 |
+
img_lab_orig = color.rgb2lab(img_rgb_orig)
|
23 |
+
img_lab_rs = color.rgb2lab(img_rgb_rs)
|
24 |
+
|
25 |
+
img_l_orig = img_lab_orig[:,:,0]
|
26 |
+
img_l_rs = img_lab_rs[:,:,0]
|
27 |
+
|
28 |
+
tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:]
|
29 |
+
tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:]
|
30 |
+
|
31 |
+
return (tens_orig_l, tens_rs_l)
|
32 |
+
|
33 |
+
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'):
|
34 |
+
# tens_orig_l 1 x 1 x H_orig x W_orig
|
35 |
+
# out_ab 1 x 2 x H x W
|
36 |
+
|
37 |
+
HW_orig = tens_orig_l.shape[2:]
|
38 |
+
HW = out_ab.shape[2:]
|
39 |
+
|
40 |
+
# call resize function if needed
|
41 |
+
if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]):
|
42 |
+
out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear')
|
43 |
+
else:
|
44 |
+
out_ab_orig = out_ab
|
45 |
+
|
46 |
+
out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1)
|
47 |
+
return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
scikit-image
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
IPython
|