|
import torch |
|
import gradio as gr |
|
import re |
|
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel |
|
|
|
device='cpu' |
|
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" |
|
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" |
|
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) |
|
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) |
|
|
|
def predict(image,max_length=64, num_beams=4): |
|
image = image.convert('RGB') |
|
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) |
|
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] |
|
caption_ids = model.generate(image, max_length = max_length)[0] |
|
caption_text = clean_text(tokenizer.decode(caption_ids)) |
|
return caption_text |
|
|
|
def set_example_image(example: list) -> dict: |
|
return gr.Image.update(value=example[0]) |
|
css = ''' |
|
h1#title { |
|
text-align: center; |
|
} |
|
h3#header { |
|
text-align: center; |
|
} |
|
img#overview { |
|
max-width: 800px; |
|
max-height: 600px; |
|
} |
|
img#style-image { |
|
max-width: 1000px; |
|
max-height: 600px; |
|
} |
|
''' |
|
demo = gr.Blocks(css="footer {visibility: hidden}") |
|
with demo: |
|
gr.Markdown('''<h1 id="title">Image to Text </h1>''') |
|
with gr.Column(): |
|
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) |
|
output = gr.outputs.Textbox(type="auto",label="Captions") |
|
btn = gr.Button("Genrate Caption") |
|
btn.click(fn=predict, inputs=input, outputs=output) |
|
|
|
demo.launch() |