Spaces:
Running
Running
import whisper | |
from pytube import YouTube | |
from transformers import pipeline | |
import gradio as gr | |
import os | |
model = whisper.load_model("base") | |
summarizer = pipeline("summarization") | |
def get_audio(url): | |
yt = YouTube(url) | |
video = yt.streams.filter(only_audio=True).first() | |
out_file=video.download(output_path=".") | |
base, ext = os.path.splitext(out_file) | |
new_file = base+'.mp3' | |
os.rename(out_file, new_file) | |
a = new_file | |
return a | |
def get_text(url): | |
result = model.transcribe(get_audio(url)) | |
return result['text'] | |
def get_summary(article): | |
print(article) | |
b = summarizer(article, min_length=5, max_length=20) | |
print(b) | |
#b = b[0]['summary_text'] | |
return b | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>Free YouTube URL Video to Text using OpenAI's Whisper Model</center></h1>") | |
gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>") | |
input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL') | |
result_button_transcribe = gr.Button('1. Transcribe') | |
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') | |
result_button = gr.Button('2. Create Summary') | |
output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') | |
result_button_1.click(get_text, inputs = input_text_url, outputs = output_text_transcribe) | |
result_button.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary) | |
demo.launch(debug = True) |