Spaces:
No application file
No application file
culture
commited on
Commit
·
21f86f2
1
Parent(s):
f07d04e
Upload gfpgan/archs/arcface_arch.py
Browse files- gfpgan/archs/arcface_arch.py +245 -0
gfpgan/archs/arcface_arch.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
3 |
+
|
4 |
+
|
5 |
+
def conv3x3(inplanes, outplanes, stride=1):
|
6 |
+
"""A simple wrapper for 3x3 convolution with padding.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
inplanes (int): Channel number of inputs.
|
10 |
+
outplanes (int): Channel number of outputs.
|
11 |
+
stride (int): Stride in convolution. Default: 1.
|
12 |
+
"""
|
13 |
+
return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
|
14 |
+
|
15 |
+
|
16 |
+
class BasicBlock(nn.Module):
|
17 |
+
"""Basic residual block used in the ResNetArcFace architecture.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
inplanes (int): Channel number of inputs.
|
21 |
+
planes (int): Channel number of outputs.
|
22 |
+
stride (int): Stride in convolution. Default: 1.
|
23 |
+
downsample (nn.Module): The downsample module. Default: None.
|
24 |
+
"""
|
25 |
+
expansion = 1 # output channel expansion ratio
|
26 |
+
|
27 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
28 |
+
super(BasicBlock, self).__init__()
|
29 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
30 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
31 |
+
self.relu = nn.ReLU(inplace=True)
|
32 |
+
self.conv2 = conv3x3(planes, planes)
|
33 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
34 |
+
self.downsample = downsample
|
35 |
+
self.stride = stride
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
residual = x
|
39 |
+
|
40 |
+
out = self.conv1(x)
|
41 |
+
out = self.bn1(out)
|
42 |
+
out = self.relu(out)
|
43 |
+
|
44 |
+
out = self.conv2(out)
|
45 |
+
out = self.bn2(out)
|
46 |
+
|
47 |
+
if self.downsample is not None:
|
48 |
+
residual = self.downsample(x)
|
49 |
+
|
50 |
+
out += residual
|
51 |
+
out = self.relu(out)
|
52 |
+
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class IRBlock(nn.Module):
|
57 |
+
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
inplanes (int): Channel number of inputs.
|
61 |
+
planes (int): Channel number of outputs.
|
62 |
+
stride (int): Stride in convolution. Default: 1.
|
63 |
+
downsample (nn.Module): The downsample module. Default: None.
|
64 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
65 |
+
"""
|
66 |
+
expansion = 1 # output channel expansion ratio
|
67 |
+
|
68 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
|
69 |
+
super(IRBlock, self).__init__()
|
70 |
+
self.bn0 = nn.BatchNorm2d(inplanes)
|
71 |
+
self.conv1 = conv3x3(inplanes, inplanes)
|
72 |
+
self.bn1 = nn.BatchNorm2d(inplanes)
|
73 |
+
self.prelu = nn.PReLU()
|
74 |
+
self.conv2 = conv3x3(inplanes, planes, stride)
|
75 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
76 |
+
self.downsample = downsample
|
77 |
+
self.stride = stride
|
78 |
+
self.use_se = use_se
|
79 |
+
if self.use_se:
|
80 |
+
self.se = SEBlock(planes)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
residual = x
|
84 |
+
out = self.bn0(x)
|
85 |
+
out = self.conv1(out)
|
86 |
+
out = self.bn1(out)
|
87 |
+
out = self.prelu(out)
|
88 |
+
|
89 |
+
out = self.conv2(out)
|
90 |
+
out = self.bn2(out)
|
91 |
+
if self.use_se:
|
92 |
+
out = self.se(out)
|
93 |
+
|
94 |
+
if self.downsample is not None:
|
95 |
+
residual = self.downsample(x)
|
96 |
+
|
97 |
+
out += residual
|
98 |
+
out = self.prelu(out)
|
99 |
+
|
100 |
+
return out
|
101 |
+
|
102 |
+
|
103 |
+
class Bottleneck(nn.Module):
|
104 |
+
"""Bottleneck block used in the ResNetArcFace architecture.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
inplanes (int): Channel number of inputs.
|
108 |
+
planes (int): Channel number of outputs.
|
109 |
+
stride (int): Stride in convolution. Default: 1.
|
110 |
+
downsample (nn.Module): The downsample module. Default: None.
|
111 |
+
"""
|
112 |
+
expansion = 4 # output channel expansion ratio
|
113 |
+
|
114 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
115 |
+
super(Bottleneck, self).__init__()
|
116 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
117 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
118 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
119 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
120 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
121 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
122 |
+
self.relu = nn.ReLU(inplace=True)
|
123 |
+
self.downsample = downsample
|
124 |
+
self.stride = stride
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
residual = x
|
128 |
+
|
129 |
+
out = self.conv1(x)
|
130 |
+
out = self.bn1(out)
|
131 |
+
out = self.relu(out)
|
132 |
+
|
133 |
+
out = self.conv2(out)
|
134 |
+
out = self.bn2(out)
|
135 |
+
out = self.relu(out)
|
136 |
+
|
137 |
+
out = self.conv3(out)
|
138 |
+
out = self.bn3(out)
|
139 |
+
|
140 |
+
if self.downsample is not None:
|
141 |
+
residual = self.downsample(x)
|
142 |
+
|
143 |
+
out += residual
|
144 |
+
out = self.relu(out)
|
145 |
+
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
class SEBlock(nn.Module):
|
150 |
+
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
channel (int): Channel number of inputs.
|
154 |
+
reduction (int): Channel reduction ration. Default: 16.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(self, channel, reduction=16):
|
158 |
+
super(SEBlock, self).__init__()
|
159 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
|
160 |
+
self.fc = nn.Sequential(
|
161 |
+
nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
|
162 |
+
nn.Sigmoid())
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
b, c, _, _ = x.size()
|
166 |
+
y = self.avg_pool(x).view(b, c)
|
167 |
+
y = self.fc(y).view(b, c, 1, 1)
|
168 |
+
return x * y
|
169 |
+
|
170 |
+
|
171 |
+
@ARCH_REGISTRY.register()
|
172 |
+
class ResNetArcFace(nn.Module):
|
173 |
+
"""ArcFace with ResNet architectures.
|
174 |
+
|
175 |
+
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
block (str): Block used in the ArcFace architecture.
|
179 |
+
layers (tuple(int)): Block numbers in each layer.
|
180 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, block, layers, use_se=True):
|
184 |
+
if block == 'IRBlock':
|
185 |
+
block = IRBlock
|
186 |
+
self.inplanes = 64
|
187 |
+
self.use_se = use_se
|
188 |
+
super(ResNetArcFace, self).__init__()
|
189 |
+
|
190 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
|
191 |
+
self.bn1 = nn.BatchNorm2d(64)
|
192 |
+
self.prelu = nn.PReLU()
|
193 |
+
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
194 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
195 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
196 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
197 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
198 |
+
self.bn4 = nn.BatchNorm2d(512)
|
199 |
+
self.dropout = nn.Dropout()
|
200 |
+
self.fc5 = nn.Linear(512 * 8 * 8, 512)
|
201 |
+
self.bn5 = nn.BatchNorm1d(512)
|
202 |
+
|
203 |
+
# initialization
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
nn.init.xavier_normal_(m.weight)
|
207 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
208 |
+
nn.init.constant_(m.weight, 1)
|
209 |
+
nn.init.constant_(m.bias, 0)
|
210 |
+
elif isinstance(m, nn.Linear):
|
211 |
+
nn.init.xavier_normal_(m.weight)
|
212 |
+
nn.init.constant_(m.bias, 0)
|
213 |
+
|
214 |
+
def _make_layer(self, block, planes, num_blocks, stride=1):
|
215 |
+
downsample = None
|
216 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
217 |
+
downsample = nn.Sequential(
|
218 |
+
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
219 |
+
nn.BatchNorm2d(planes * block.expansion),
|
220 |
+
)
|
221 |
+
layers = []
|
222 |
+
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
|
223 |
+
self.inplanes = planes
|
224 |
+
for _ in range(1, num_blocks):
|
225 |
+
layers.append(block(self.inplanes, planes, use_se=self.use_se))
|
226 |
+
|
227 |
+
return nn.Sequential(*layers)
|
228 |
+
|
229 |
+
def forward(self, x):
|
230 |
+
x = self.conv1(x)
|
231 |
+
x = self.bn1(x)
|
232 |
+
x = self.prelu(x)
|
233 |
+
x = self.maxpool(x)
|
234 |
+
|
235 |
+
x = self.layer1(x)
|
236 |
+
x = self.layer2(x)
|
237 |
+
x = self.layer3(x)
|
238 |
+
x = self.layer4(x)
|
239 |
+
x = self.bn4(x)
|
240 |
+
x = self.dropout(x)
|
241 |
+
x = x.view(x.size(0), -1)
|
242 |
+
x = self.fc5(x)
|
243 |
+
x = self.bn5(x)
|
244 |
+
|
245 |
+
return x
|