culture commited on
Commit
21f86f2
·
1 Parent(s): f07d04e

Upload gfpgan/archs/arcface_arch.py

Browse files
Files changed (1) hide show
  1. gfpgan/archs/arcface_arch.py +245 -0
gfpgan/archs/arcface_arch.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from basicsr.utils.registry import ARCH_REGISTRY
3
+
4
+
5
+ def conv3x3(inplanes, outplanes, stride=1):
6
+ """A simple wrapper for 3x3 convolution with padding.
7
+
8
+ Args:
9
+ inplanes (int): Channel number of inputs.
10
+ outplanes (int): Channel number of outputs.
11
+ stride (int): Stride in convolution. Default: 1.
12
+ """
13
+ return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
14
+
15
+
16
+ class BasicBlock(nn.Module):
17
+ """Basic residual block used in the ResNetArcFace architecture.
18
+
19
+ Args:
20
+ inplanes (int): Channel number of inputs.
21
+ planes (int): Channel number of outputs.
22
+ stride (int): Stride in convolution. Default: 1.
23
+ downsample (nn.Module): The downsample module. Default: None.
24
+ """
25
+ expansion = 1 # output channel expansion ratio
26
+
27
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
28
+ super(BasicBlock, self).__init__()
29
+ self.conv1 = conv3x3(inplanes, planes, stride)
30
+ self.bn1 = nn.BatchNorm2d(planes)
31
+ self.relu = nn.ReLU(inplace=True)
32
+ self.conv2 = conv3x3(planes, planes)
33
+ self.bn2 = nn.BatchNorm2d(planes)
34
+ self.downsample = downsample
35
+ self.stride = stride
36
+
37
+ def forward(self, x):
38
+ residual = x
39
+
40
+ out = self.conv1(x)
41
+ out = self.bn1(out)
42
+ out = self.relu(out)
43
+
44
+ out = self.conv2(out)
45
+ out = self.bn2(out)
46
+
47
+ if self.downsample is not None:
48
+ residual = self.downsample(x)
49
+
50
+ out += residual
51
+ out = self.relu(out)
52
+
53
+ return out
54
+
55
+
56
+ class IRBlock(nn.Module):
57
+ """Improved residual block (IR Block) used in the ResNetArcFace architecture.
58
+
59
+ Args:
60
+ inplanes (int): Channel number of inputs.
61
+ planes (int): Channel number of outputs.
62
+ stride (int): Stride in convolution. Default: 1.
63
+ downsample (nn.Module): The downsample module. Default: None.
64
+ use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
65
+ """
66
+ expansion = 1 # output channel expansion ratio
67
+
68
+ def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
69
+ super(IRBlock, self).__init__()
70
+ self.bn0 = nn.BatchNorm2d(inplanes)
71
+ self.conv1 = conv3x3(inplanes, inplanes)
72
+ self.bn1 = nn.BatchNorm2d(inplanes)
73
+ self.prelu = nn.PReLU()
74
+ self.conv2 = conv3x3(inplanes, planes, stride)
75
+ self.bn2 = nn.BatchNorm2d(planes)
76
+ self.downsample = downsample
77
+ self.stride = stride
78
+ self.use_se = use_se
79
+ if self.use_se:
80
+ self.se = SEBlock(planes)
81
+
82
+ def forward(self, x):
83
+ residual = x
84
+ out = self.bn0(x)
85
+ out = self.conv1(out)
86
+ out = self.bn1(out)
87
+ out = self.prelu(out)
88
+
89
+ out = self.conv2(out)
90
+ out = self.bn2(out)
91
+ if self.use_se:
92
+ out = self.se(out)
93
+
94
+ if self.downsample is not None:
95
+ residual = self.downsample(x)
96
+
97
+ out += residual
98
+ out = self.prelu(out)
99
+
100
+ return out
101
+
102
+
103
+ class Bottleneck(nn.Module):
104
+ """Bottleneck block used in the ResNetArcFace architecture.
105
+
106
+ Args:
107
+ inplanes (int): Channel number of inputs.
108
+ planes (int): Channel number of outputs.
109
+ stride (int): Stride in convolution. Default: 1.
110
+ downsample (nn.Module): The downsample module. Default: None.
111
+ """
112
+ expansion = 4 # output channel expansion ratio
113
+
114
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
115
+ super(Bottleneck, self).__init__()
116
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
117
+ self.bn1 = nn.BatchNorm2d(planes)
118
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
119
+ self.bn2 = nn.BatchNorm2d(planes)
120
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
121
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
122
+ self.relu = nn.ReLU(inplace=True)
123
+ self.downsample = downsample
124
+ self.stride = stride
125
+
126
+ def forward(self, x):
127
+ residual = x
128
+
129
+ out = self.conv1(x)
130
+ out = self.bn1(out)
131
+ out = self.relu(out)
132
+
133
+ out = self.conv2(out)
134
+ out = self.bn2(out)
135
+ out = self.relu(out)
136
+
137
+ out = self.conv3(out)
138
+ out = self.bn3(out)
139
+
140
+ if self.downsample is not None:
141
+ residual = self.downsample(x)
142
+
143
+ out += residual
144
+ out = self.relu(out)
145
+
146
+ return out
147
+
148
+
149
+ class SEBlock(nn.Module):
150
+ """The squeeze-and-excitation block (SEBlock) used in the IRBlock.
151
+
152
+ Args:
153
+ channel (int): Channel number of inputs.
154
+ reduction (int): Channel reduction ration. Default: 16.
155
+ """
156
+
157
+ def __init__(self, channel, reduction=16):
158
+ super(SEBlock, self).__init__()
159
+ self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
160
+ self.fc = nn.Sequential(
161
+ nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
162
+ nn.Sigmoid())
163
+
164
+ def forward(self, x):
165
+ b, c, _, _ = x.size()
166
+ y = self.avg_pool(x).view(b, c)
167
+ y = self.fc(y).view(b, c, 1, 1)
168
+ return x * y
169
+
170
+
171
+ @ARCH_REGISTRY.register()
172
+ class ResNetArcFace(nn.Module):
173
+ """ArcFace with ResNet architectures.
174
+
175
+ Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
176
+
177
+ Args:
178
+ block (str): Block used in the ArcFace architecture.
179
+ layers (tuple(int)): Block numbers in each layer.
180
+ use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
181
+ """
182
+
183
+ def __init__(self, block, layers, use_se=True):
184
+ if block == 'IRBlock':
185
+ block = IRBlock
186
+ self.inplanes = 64
187
+ self.use_se = use_se
188
+ super(ResNetArcFace, self).__init__()
189
+
190
+ self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
191
+ self.bn1 = nn.BatchNorm2d(64)
192
+ self.prelu = nn.PReLU()
193
+ self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
194
+ self.layer1 = self._make_layer(block, 64, layers[0])
195
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
196
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
197
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
198
+ self.bn4 = nn.BatchNorm2d(512)
199
+ self.dropout = nn.Dropout()
200
+ self.fc5 = nn.Linear(512 * 8 * 8, 512)
201
+ self.bn5 = nn.BatchNorm1d(512)
202
+
203
+ # initialization
204
+ for m in self.modules():
205
+ if isinstance(m, nn.Conv2d):
206
+ nn.init.xavier_normal_(m.weight)
207
+ elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
208
+ nn.init.constant_(m.weight, 1)
209
+ nn.init.constant_(m.bias, 0)
210
+ elif isinstance(m, nn.Linear):
211
+ nn.init.xavier_normal_(m.weight)
212
+ nn.init.constant_(m.bias, 0)
213
+
214
+ def _make_layer(self, block, planes, num_blocks, stride=1):
215
+ downsample = None
216
+ if stride != 1 or self.inplanes != planes * block.expansion:
217
+ downsample = nn.Sequential(
218
+ nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
219
+ nn.BatchNorm2d(planes * block.expansion),
220
+ )
221
+ layers = []
222
+ layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
223
+ self.inplanes = planes
224
+ for _ in range(1, num_blocks):
225
+ layers.append(block(self.inplanes, planes, use_se=self.use_se))
226
+
227
+ return nn.Sequential(*layers)
228
+
229
+ def forward(self, x):
230
+ x = self.conv1(x)
231
+ x = self.bn1(x)
232
+ x = self.prelu(x)
233
+ x = self.maxpool(x)
234
+
235
+ x = self.layer1(x)
236
+ x = self.layer2(x)
237
+ x = self.layer3(x)
238
+ x = self.layer4(x)
239
+ x = self.bn4(x)
240
+ x = self.dropout(x)
241
+ x = x.view(x.size(0), -1)
242
+ x = self.fc5(x)
243
+ x = self.bn5(x)
244
+
245
+ return x