culture commited on
Commit
25a346f
·
1 Parent(s): a15dca5

Delete scripts/parse_landmark.py

Browse files
Files changed (1) hide show
  1. scripts/parse_landmark.py +0 -85
scripts/parse_landmark.py DELETED
@@ -1,85 +0,0 @@
1
- import cv2
2
- import json
3
- import numpy as np
4
- import os
5
- import torch
6
- from basicsr.utils import FileClient, imfrombytes
7
- from collections import OrderedDict
8
-
9
- # ---------------------------- This script is used to parse facial landmarks ------------------------------------- #
10
- # Configurations
11
- save_img = False
12
- scale = 0.5 # 0.5 for official FFHQ (512x512), 1 for others
13
- enlarge_ratio = 1.4 # only for eyes
14
- json_path = 'ffhq-dataset-v2.json'
15
- face_path = 'datasets/ffhq/ffhq_512.lmdb'
16
- save_path = './FFHQ_eye_mouth_landmarks_512.pth'
17
-
18
- print('Load JSON metadata...')
19
- # use the official json file in FFHQ dataset
20
- with open(json_path, 'rb') as f:
21
- json_data = json.load(f, object_pairs_hook=OrderedDict)
22
-
23
- print('Open LMDB file...')
24
- # read ffhq images
25
- file_client = FileClient('lmdb', db_paths=face_path)
26
- with open(os.path.join(face_path, 'meta_info.txt')) as fin:
27
- paths = [line.split('.')[0] for line in fin]
28
-
29
- save_dict = {}
30
-
31
- for item_idx, item in enumerate(json_data.values()):
32
- print(f'\r{item_idx} / {len(json_data)}, {item["image"]["file_path"]} ', end='', flush=True)
33
-
34
- # parse landmarks
35
- lm = np.array(item['image']['face_landmarks'])
36
- lm = lm * scale
37
-
38
- item_dict = {}
39
- # get image
40
- if save_img:
41
- img_bytes = file_client.get(paths[item_idx])
42
- img = imfrombytes(img_bytes, float32=True)
43
-
44
- # get landmarks for each component
45
- map_left_eye = list(range(36, 42))
46
- map_right_eye = list(range(42, 48))
47
- map_mouth = list(range(48, 68))
48
-
49
- # eye_left
50
- mean_left_eye = np.mean(lm[map_left_eye], 0) # (x, y)
51
- half_len_left_eye = np.max((np.max(np.max(lm[map_left_eye], 0) - np.min(lm[map_left_eye], 0)) / 2, 16))
52
- item_dict['left_eye'] = [mean_left_eye[0], mean_left_eye[1], half_len_left_eye]
53
- # mean_left_eye[0] = 512 - mean_left_eye[0] # for testing flip
54
- half_len_left_eye *= enlarge_ratio
55
- loc_left_eye = np.hstack((mean_left_eye - half_len_left_eye + 1, mean_left_eye + half_len_left_eye)).astype(int)
56
- if save_img:
57
- eye_left_img = img[loc_left_eye[1]:loc_left_eye[3], loc_left_eye[0]:loc_left_eye[2], :]
58
- cv2.imwrite(f'tmp/{item_idx:08d}_eye_left.png', eye_left_img * 255)
59
-
60
- # eye_right
61
- mean_right_eye = np.mean(lm[map_right_eye], 0)
62
- half_len_right_eye = np.max((np.max(np.max(lm[map_right_eye], 0) - np.min(lm[map_right_eye], 0)) / 2, 16))
63
- item_dict['right_eye'] = [mean_right_eye[0], mean_right_eye[1], half_len_right_eye]
64
- # mean_right_eye[0] = 512 - mean_right_eye[0] # # for testing flip
65
- half_len_right_eye *= enlarge_ratio
66
- loc_right_eye = np.hstack(
67
- (mean_right_eye - half_len_right_eye + 1, mean_right_eye + half_len_right_eye)).astype(int)
68
- if save_img:
69
- eye_right_img = img[loc_right_eye[1]:loc_right_eye[3], loc_right_eye[0]:loc_right_eye[2], :]
70
- cv2.imwrite(f'tmp/{item_idx:08d}_eye_right.png', eye_right_img * 255)
71
-
72
- # mouth
73
- mean_mouth = np.mean(lm[map_mouth], 0)
74
- half_len_mouth = np.max((np.max(np.max(lm[map_mouth], 0) - np.min(lm[map_mouth], 0)) / 2, 16))
75
- item_dict['mouth'] = [mean_mouth[0], mean_mouth[1], half_len_mouth]
76
- # mean_mouth[0] = 512 - mean_mouth[0] # for testing flip
77
- loc_mouth = np.hstack((mean_mouth - half_len_mouth + 1, mean_mouth + half_len_mouth)).astype(int)
78
- if save_img:
79
- mouth_img = img[loc_mouth[1]:loc_mouth[3], loc_mouth[0]:loc_mouth[2], :]
80
- cv2.imwrite(f'tmp/{item_idx:08d}_mouth.png', mouth_img * 255)
81
-
82
- save_dict[f'{item_idx:08d}'] = item_dict
83
-
84
- print('Save...')
85
- torch.save(save_dict, save_path)