culture commited on
Commit
9a117eb
·
1 Parent(s): b2456aa

Upload scripts/parse_landmark.py

Browse files
Files changed (1) hide show
  1. scripts/parse_landmark.py +85 -0
scripts/parse_landmark.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import json
3
+ import numpy as np
4
+ import os
5
+ import torch
6
+ from basicsr.utils import FileClient, imfrombytes
7
+ from collections import OrderedDict
8
+
9
+ # ---------------------------- This script is used to parse facial landmarks ------------------------------------- #
10
+ # Configurations
11
+ save_img = False
12
+ scale = 0.5 # 0.5 for official FFHQ (512x512), 1 for others
13
+ enlarge_ratio = 1.4 # only for eyes
14
+ json_path = 'ffhq-dataset-v2.json'
15
+ face_path = 'datasets/ffhq/ffhq_512.lmdb'
16
+ save_path = './FFHQ_eye_mouth_landmarks_512.pth'
17
+
18
+ print('Load JSON metadata...')
19
+ # use the official json file in FFHQ dataset
20
+ with open(json_path, 'rb') as f:
21
+ json_data = json.load(f, object_pairs_hook=OrderedDict)
22
+
23
+ print('Open LMDB file...')
24
+ # read ffhq images
25
+ file_client = FileClient('lmdb', db_paths=face_path)
26
+ with open(os.path.join(face_path, 'meta_info.txt')) as fin:
27
+ paths = [line.split('.')[0] for line in fin]
28
+
29
+ save_dict = {}
30
+
31
+ for item_idx, item in enumerate(json_data.values()):
32
+ print(f'\r{item_idx} / {len(json_data)}, {item["image"]["file_path"]} ', end='', flush=True)
33
+
34
+ # parse landmarks
35
+ lm = np.array(item['image']['face_landmarks'])
36
+ lm = lm * scale
37
+
38
+ item_dict = {}
39
+ # get image
40
+ if save_img:
41
+ img_bytes = file_client.get(paths[item_idx])
42
+ img = imfrombytes(img_bytes, float32=True)
43
+
44
+ # get landmarks for each component
45
+ map_left_eye = list(range(36, 42))
46
+ map_right_eye = list(range(42, 48))
47
+ map_mouth = list(range(48, 68))
48
+
49
+ # eye_left
50
+ mean_left_eye = np.mean(lm[map_left_eye], 0) # (x, y)
51
+ half_len_left_eye = np.max((np.max(np.max(lm[map_left_eye], 0) - np.min(lm[map_left_eye], 0)) / 2, 16))
52
+ item_dict['left_eye'] = [mean_left_eye[0], mean_left_eye[1], half_len_left_eye]
53
+ # mean_left_eye[0] = 512 - mean_left_eye[0] # for testing flip
54
+ half_len_left_eye *= enlarge_ratio
55
+ loc_left_eye = np.hstack((mean_left_eye - half_len_left_eye + 1, mean_left_eye + half_len_left_eye)).astype(int)
56
+ if save_img:
57
+ eye_left_img = img[loc_left_eye[1]:loc_left_eye[3], loc_left_eye[0]:loc_left_eye[2], :]
58
+ cv2.imwrite(f'tmp/{item_idx:08d}_eye_left.png', eye_left_img * 255)
59
+
60
+ # eye_right
61
+ mean_right_eye = np.mean(lm[map_right_eye], 0)
62
+ half_len_right_eye = np.max((np.max(np.max(lm[map_right_eye], 0) - np.min(lm[map_right_eye], 0)) / 2, 16))
63
+ item_dict['right_eye'] = [mean_right_eye[0], mean_right_eye[1], half_len_right_eye]
64
+ # mean_right_eye[0] = 512 - mean_right_eye[0] # # for testing flip
65
+ half_len_right_eye *= enlarge_ratio
66
+ loc_right_eye = np.hstack(
67
+ (mean_right_eye - half_len_right_eye + 1, mean_right_eye + half_len_right_eye)).astype(int)
68
+ if save_img:
69
+ eye_right_img = img[loc_right_eye[1]:loc_right_eye[3], loc_right_eye[0]:loc_right_eye[2], :]
70
+ cv2.imwrite(f'tmp/{item_idx:08d}_eye_right.png', eye_right_img * 255)
71
+
72
+ # mouth
73
+ mean_mouth = np.mean(lm[map_mouth], 0)
74
+ half_len_mouth = np.max((np.max(np.max(lm[map_mouth], 0) - np.min(lm[map_mouth], 0)) / 2, 16))
75
+ item_dict['mouth'] = [mean_mouth[0], mean_mouth[1], half_len_mouth]
76
+ # mean_mouth[0] = 512 - mean_mouth[0] # for testing flip
77
+ loc_mouth = np.hstack((mean_mouth - half_len_mouth + 1, mean_mouth + half_len_mouth)).astype(int)
78
+ if save_img:
79
+ mouth_img = img[loc_mouth[1]:loc_mouth[3], loc_mouth[0]:loc_mouth[2], :]
80
+ cv2.imwrite(f'tmp/{item_idx:08d}_mouth.png', mouth_img * 255)
81
+
82
+ save_dict[f'{item_idx:08d}'] = item_dict
83
+
84
+ print('Save...')
85
+ torch.save(save_dict, save_path)