Spaces:
Running
Running
File size: 7,537 Bytes
e2d93c0 f990271 e2d93c0 49a5c13 13c84da 49a5c13 e2d93c0 49a5c13 b62d20f e2d93c0 49a5c13 e2d93c0 49a5c13 13c84da 49a5c13 e2d93c0 49a5c13 b62d20f e2d93c0 49a5c13 e2d93c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from __future__ import annotations
import os
import gradio as gr
import torch
import torchaudio
import spaces
import nemo.collections.asr as nemo_asr
LANGUAGE_NAME_TO_CODE = {
"Assamese": "as",
"Bengali": "bn",
"Bodo": "br",
"Dogri": "doi",
"Gujarati": "gu",
"Hindi": "hi",
"Kannada": "kn",
"Kashmiri": "ks",
"Konkani": "kok",
"Maithili": "mai",
"Malayalam": "ml",
"Manipuri": "mni",
"Marathi": "mr",
"Nepali": "ne",
"Odia": "or",
"Punjabi": "pa",
"Sanskrit": "sa",
"Santali": "sat",
"Sindhi": "sd",
"Tamil": "ta",
"Telugu": "te",
"Urdu": "ur"
}
DESCRIPTION = """\
### **IndicConformer: Speech Recognition for Indian Languages** 🎙️➡️📜
This Gradio demo showcases **IndicConformer**, a speech recognition model for **22 Indian languages**. The model operates in two modes: **CTC (Connectionist Temporal Classification)** and **RNNT (Recurrent Neural Network Transducer)**, providing robust and accurate transcriptions across diverse linguistic and acoustic conditions.
#### **How to Use:**
1. **Upload or record** an audio clip in any supported Indian language.
2. Select the **mode** (CTC or RNNT) for transcription.
3. Click **"Transcribe"** to generate the corresponding text in the target language.
4. View or copy the output for further use.
🚀 Try it out and experience seamless speech recognition for Indian languages!
"""
hf_token = os.getenv("HF_TOKEN")
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
model_name_or_path = "ai4bharat/IndicConformer"
model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name_or_path).to(device)
# model = nemo_asr.models.EncDecCTCModel.restore_from("indicconformer_stt_bn_hybrid_rnnt_large.nemo").to(device)
model.eval()
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
AUDIO_SAMPLE_RATE = 16000
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
DEFAULT_TARGET_LANGUAGE = "Bengali"
@spaces.GPU
def run_asr_ctc(input_audio: str, target_language: str) -> str:
lang_id = LANGUAGE_NAME_TO_CODE[target_language]
# Load and preprocess audio
audio_tensor, orig_freq = torchaudio.load(input_audio)
# Convert to mono if not already
if audio_tensor.shape[0] > 1:
audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True)
# Ensure shape [B x T]
if len(audio_tensor.shape) == 1:
audio_tensor = audio_tensor.unsqueeze(0) # Add batch dimension if missing
if audio_tensor.ndim > 1:
audio_tensor = audio_tensor.squeeze(0)
# Resample to 16kHz
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=orig_freq, new_freq=16000)
model.cur_decoder = "ctc"
ctc_text = model.transcribe([audio_tensor.numpy()], batch_size=1, logprobs=False, language_id=lang_id)[0]
return ctc_text[0]
# @spaces.GPU
# def run_asr_ctc(input_audio: str, target_language: str) -> str:
# # preprocess_audio(input_audio)
# # input_audio, orig_freq = torchaudio.load(input_audio)
# # input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
# lang_id = LANGUAGE_NAME_TO_CODE[target_language]
# model.cur_decoder = "ctc"
# ctc_text = model.transcribe([input_audio], batch_size=1, logprobs=False, language_id=lang_id)[0]
# return ctc_text[0]
@spaces.GPU
def run_asr_rnnt(input_audio: str, target_language: str) -> str:
lang_id = LANGUAGE_NAME_TO_CODE[target_language]
# Load and preprocess audio
audio_tensor, orig_freq = torchaudio.load(input_audio)
# Convert to mono if not already
if audio_tensor.shape[0] > 1:
audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True)
# Ensure shape [B x T]
if len(audio_tensor.shape) == 1:
audio_tensor = audio_tensor.unsqueeze(0) # Add batch dimension if missing
if audio_tensor.ndim > 1:
audio_tensor = audio_tensor.squeeze(0)
# Resample to 16kHz
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=orig_freq, new_freq=16000)
model.cur_decoder = "rnnt"
ctc_text = model.transcribe([audio_tensor.numpy()], batch_size=1, logprobs=False, language_id=lang_id)[0]
return ctc_text[0]
# @spaces.GPU
# def run_asr_rnnt(input_audio: str, target_language: str) -> str:
# # preprocess_audio(input_audio)
# # input_audio, orig_freq = torchaudio.load(input_audio)
# # input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
# lang_id = LANGUAGE_NAME_TO_CODE[target_language]
# model.cur_decoder = "rnnt"
# ctc_text = model.transcribe([input_audio], batch_size=1,logprobs=False, language_id=lang_id)[0]
# return ctc_text[0]
with gr.Blocks() as demo_asr_ctc:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
target_language = gr.Dropdown(
label="Target language",
choices=LANGUAGE_NAME_TO_CODE.keys(),
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Transcribe")
with gr.Column():
output_text = gr.Textbox(label="Transcribed text")
gr.Examples(
examples=[
["assets/Bengali.wav", "Bengali", "English"],
["assets/Gujarati.wav", "Gujarati", "Hindi"],
["assets/Punjabi.wav", "Punjabi", "Hindi"],
],
inputs=[input_audio, target_language],
outputs=output_text,
fn=run_asr_ctc,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_asr_ctc,
inputs=[input_audio, target_language],
outputs=output_text,
api_name="asr",
)
with gr.Blocks() as demo_asr_rnnt:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
target_language = gr.Dropdown(
label="Target language",
choices=LANGUAGE_NAME_TO_CODE.keys(),
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Transcribe")
with gr.Column():
output_text = gr.Textbox(label="Transcribed text")
gr.Examples(
examples=[
["assets/Bengali.wav", "Bengali", "English"],
["assets/Gujarati.wav", "Gujarati", "Hindi"],
["assets/Punjabi.wav", "Punjabi", "Hindi"],
],
inputs=[input_audio, target_language],
outputs=output_text,
fn=run_asr_rnnt,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_asr_rnnt,
inputs=[input_audio, target_language],
outputs=output_text,
api_name="asr",
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Tabs():
with gr.Tab(label="CTC"):
demo_asr_ctc.render()
with gr.Tab(label="RNNT"):
demo_asr_rnnt.render()
if __name__ == "__main__":
demo.queue(max_size=50).launch()
|