File size: 7,537 Bytes
e2d93c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f990271
 
 
e2d93c0
 
 
 
 
 
 
 
 
 
 
 
49a5c13
 
 
 
 
 
 
 
 
 
13c84da
 
 
49a5c13
 
 
 
e2d93c0
49a5c13
 
b62d20f
e2d93c0
49a5c13
 
 
 
 
 
 
 
 
 
 
 
e2d93c0
 
 
 
49a5c13
 
 
 
 
 
 
 
 
 
13c84da
 
 
49a5c13
 
 
 
e2d93c0
49a5c13
 
b62d20f
e2d93c0
49a5c13
 
 
 
 
 
 
 
 
 
 
 
e2d93c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import annotations

import os

import gradio as gr

import torch
import torchaudio

import spaces

import nemo.collections.asr as nemo_asr

LANGUAGE_NAME_TO_CODE = {
    "Assamese": "as",
    "Bengali": "bn",
    "Bodo": "br",
    "Dogri": "doi",
    "Gujarati": "gu",
    "Hindi": "hi",
    "Kannada": "kn",
    "Kashmiri": "ks",
    "Konkani": "kok",
    "Maithili": "mai",
    "Malayalam": "ml",
    "Manipuri": "mni",
    "Marathi": "mr",
    "Nepali": "ne",
    "Odia": "or",
    "Punjabi": "pa",
    "Sanskrit": "sa",
    "Santali": "sat",
    "Sindhi": "sd",
    "Tamil": "ta",
    "Telugu": "te",
    "Urdu": "ur"
}


DESCRIPTION = """\
### **IndicConformer: Speech Recognition for Indian Languages** 🎙️➡️📜  

This Gradio demo showcases **IndicConformer**, a speech recognition model for **22 Indian languages**. The model operates in two modes: **CTC (Connectionist Temporal Classification)** and **RNNT (Recurrent Neural Network Transducer)**, providing robust and accurate transcriptions across diverse linguistic and acoustic conditions.  

#### **How to Use:**  
1. **Upload or record** an audio clip in any supported Indian language.  
2. Select the **mode** (CTC or RNNT) for transcription.  
3. Click **"Transcribe"** to generate the corresponding text in the target language.  
4. View or copy the output for further use.  

🚀 Try it out and experience seamless speech recognition for Indian languages!
"""

hf_token = os.getenv("HF_TOKEN")
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
model_name_or_path = "ai4bharat/IndicConformer"
model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name_or_path).to(device)
# model = nemo_asr.models.EncDecCTCModel.restore_from("indicconformer_stt_bn_hybrid_rnnt_large.nemo").to(device)
model.eval()

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()

AUDIO_SAMPLE_RATE = 16000
MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
DEFAULT_TARGET_LANGUAGE = "Bengali"

@spaces.GPU
def run_asr_ctc(input_audio: str, target_language: str) -> str:
    lang_id = LANGUAGE_NAME_TO_CODE[target_language]

    # Load and preprocess audio
    audio_tensor, orig_freq = torchaudio.load(input_audio)
    
    # Convert to mono if not already
    if audio_tensor.shape[0] > 1:
        audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True)
    
    # Ensure shape [B x T]
    if len(audio_tensor.shape) == 1:
        audio_tensor = audio_tensor.unsqueeze(0)  # Add batch dimension if missing

    if audio_tensor.ndim > 1:
        audio_tensor = audio_tensor.squeeze(0)
    
    # Resample to 16kHz
    audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=orig_freq, new_freq=16000)
    
    model.cur_decoder = "ctc"
    ctc_text = model.transcribe([audio_tensor.numpy()], batch_size=1, logprobs=False, language_id=lang_id)[0]
    
    return ctc_text[0]

# @spaces.GPU
# def run_asr_ctc(input_audio: str, target_language: str) -> str:
#     # preprocess_audio(input_audio)
#     # input_audio, orig_freq = torchaudio.load(input_audio)
#     # input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
#     lang_id = LANGUAGE_NAME_TO_CODE[target_language]

#     model.cur_decoder = "ctc"
#     ctc_text = model.transcribe([input_audio], batch_size=1, logprobs=False, language_id=lang_id)[0]

#     return ctc_text[0]

@spaces.GPU
def run_asr_rnnt(input_audio: str, target_language: str) -> str:
    lang_id = LANGUAGE_NAME_TO_CODE[target_language]

    # Load and preprocess audio
    audio_tensor, orig_freq = torchaudio.load(input_audio)
    
    # Convert to mono if not already
    if audio_tensor.shape[0] > 1:
        audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True)
    
    # Ensure shape [B x T]
    if len(audio_tensor.shape) == 1:
        audio_tensor = audio_tensor.unsqueeze(0)  # Add batch dimension if missing

    if audio_tensor.ndim > 1:
        audio_tensor = audio_tensor.squeeze(0)
    
    # Resample to 16kHz
    audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=orig_freq, new_freq=16000)
    
    model.cur_decoder = "rnnt"
    ctc_text = model.transcribe([audio_tensor.numpy()], batch_size=1, logprobs=False, language_id=lang_id)[0]
    
    return ctc_text[0]

# @spaces.GPU
# def run_asr_rnnt(input_audio: str, target_language: str) -> str:
#     # preprocess_audio(input_audio)
#     # input_audio, orig_freq = torchaudio.load(input_audio)
#     # input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
#     lang_id = LANGUAGE_NAME_TO_CODE[target_language]

#     model.cur_decoder = "rnnt"
#     ctc_text = model.transcribe([input_audio], batch_size=1,logprobs=False, language_id=lang_id)[0]

#     return ctc_text[0]



with gr.Blocks() as demo_asr_ctc:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=LANGUAGE_NAME_TO_CODE.keys(),
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Transcribe")
        with gr.Column():
            output_text = gr.Textbox(label="Transcribed text")

    gr.Examples(
        examples=[
            ["assets/Bengali.wav", "Bengali", "English"],
            ["assets/Gujarati.wav", "Gujarati", "Hindi"],
            ["assets/Punjabi.wav", "Punjabi", "Hindi"],

        ],
        inputs=[input_audio, target_language],
        outputs=output_text,
        fn=run_asr_ctc,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_asr_ctc,
        inputs=[input_audio, target_language],
        outputs=output_text,
        api_name="asr",
    )

with gr.Blocks() as demo_asr_rnnt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=LANGUAGE_NAME_TO_CODE.keys(),
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Transcribe")
        with gr.Column():
            output_text = gr.Textbox(label="Transcribed text")

    gr.Examples(
        examples=[
            ["assets/Bengali.wav", "Bengali", "English"],
            ["assets/Gujarati.wav", "Gujarati", "Hindi"],
            ["assets/Punjabi.wav", "Punjabi", "Hindi"],

        ],
        inputs=[input_audio, target_language],
        outputs=output_text,
        fn=run_asr_rnnt,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_asr_rnnt,
        inputs=[input_audio, target_language],
        outputs=output_text,
        api_name="asr",
    )


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )

    with gr.Tabs():
        with gr.Tab(label="CTC"):
            demo_asr_ctc.render()
        with gr.Tab(label="RNNT"):
            demo_asr_rnnt.render()


if __name__ == "__main__":
    demo.queue(max_size=50).launch()