Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
from IndicTransToolkit import IndicProcessor
|
4 |
+
# recommended to run this on a gpu with flash_attn installed
|
5 |
+
# don't set attn_implemetation if you don't have flash_attn
|
6 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
src_lang, tgt_lang = "eng_Latn", "hin_Deva"
|
9 |
+
model_name = "ai4bharat/indictrans2-en-indic-1B"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
+
|
12 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
13 |
+
model_name,
|
14 |
+
trust_remote_code=True,
|
15 |
+
torch_dtype=torch.float16, # performance might slightly vary for bfloat16
|
16 |
+
attn_implementation="flash_attention_2"
|
17 |
+
).to(DEVICE)
|
18 |
+
|
19 |
+
ip = IndicProcessor(inference=True)
|
20 |
+
|
21 |
+
input_sentences = [
|
22 |
+
"When I was young, I used to go to the park every day.",
|
23 |
+
"We watched a new movie last week, which was very inspiring.",
|
24 |
+
"If you had met me at that time, we would have gone out to eat.",
|
25 |
+
"My friend has invited me to his birthday party, and I will give him a gift.",
|
26 |
+
]
|
27 |
+
|
28 |
+
batch = ip.preprocess_batch(
|
29 |
+
input_sentences,
|
30 |
+
src_lang=src_lang,
|
31 |
+
tgt_lang=tgt_lang,
|
32 |
+
)
|
33 |
+
|
34 |
+
# Tokenize the sentences and generate input encodings
|
35 |
+
inputs = tokenizer(
|
36 |
+
batch,
|
37 |
+
truncation=True,
|
38 |
+
padding="longest",
|
39 |
+
return_tensors="pt",
|
40 |
+
return_attention_mask=True,
|
41 |
+
).to(DEVICE)
|
42 |
+
|
43 |
+
# Generate translations using the model
|
44 |
+
with torch.no_grad():
|
45 |
+
generated_tokens = model.generate(
|
46 |
+
**inputs,
|
47 |
+
use_cache=True,
|
48 |
+
min_length=0,
|
49 |
+
max_length=256,
|
50 |
+
num_beams=5,
|
51 |
+
num_return_sequences=1,
|
52 |
+
)
|
53 |
+
|
54 |
+
# Decode the generated tokens into text
|
55 |
+
with tokenizer.as_target_tokenizer():
|
56 |
+
generated_tokens = tokenizer.batch_decode(
|
57 |
+
generated_tokens.detach().cpu().tolist(),
|
58 |
+
skip_special_tokens=True,
|
59 |
+
clean_up_tokenization_spaces=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Postprocess the translations, including entity replacement
|
63 |
+
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
64 |
+
|
65 |
+
for input_sentence, translation in zip(input_sentences, translations):
|
66 |
+
print(f"{src_lang}: {input_sentence}")
|
67 |
+
print(f"{tgt_lang}: {translation}")
|