Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,28 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
video_file = open('myvideo.mp4', 'rb')
|
6 |
video_bytes = video_file.read()
|
|
|
7 |
|
8 |
-
st.video(video_bytes)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
3 |
|
4 |
+
def getit(prompt):
|
5 |
+
generated = tokenizer(f'<|startoftext|> {prompt}', return_tensors="pt").input_ids.cpu()
|
6 |
+
sample_outputs = sample_outputs = model.generate(
|
7 |
+
generated,
|
8 |
+
do_sample=True,
|
9 |
+
max_length=512,
|
10 |
+
top_k=50,
|
11 |
+
top_p=0.95,
|
12 |
+
num_return_sequences=1,
|
13 |
+
no_repeat_ngram_size = 3,
|
14 |
+
temperature = 0.7
|
15 |
+
)
|
16 |
+
predicted_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
|
17 |
+
return predicted_text[len(prompt):]
|
18 |
+
|
19 |
+
model_name = 'tsaditya/GPT-Kalki'
|
20 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
inp = st.text_input(value="மணிமேகலை! உன் மனோரதம் நிறைவேறிவிட்டது.")
|
23 |
+
out = getit(inp)
|
24 |
+
st.write(out)
|
25 |
video_file = open('myvideo.mp4', 'rb')
|
26 |
video_bytes = video_file.read()
|
27 |
+
st.video(video_bytes)
|
28 |
|
|