File size: 23,461 Bytes
05b0e9e d63f0d1 05b0e9e 6f0005a 05b0e9e 6f0005a 05b0e9e 6f0005a 05b0e9e 6450a99 05b0e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import os
import sys
import text_cleaning_transforerms as tc
import text_cleaning
import logging
import torch
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import itertools
import json
import joblib
from gensim.models import phrases
import math
import xgboost
import re
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
import html
from config import config_file
from lime import lime_text
from lime.lime_text import LimeTextExplainer
from transformers import AutoModelForSequenceClassification,AutoTokenizer
from nltk.tokenize import word_tokenize
"""
Cancer Severity Class.
export env_name="path"
"""
class BERT_Model(object):
def __init__(self, config,bert_option:str="clinicalBERT"):
try:
self.config = config
self.project_dir = os.path.dirname(os.path.abspath(__file__))
self.bert_option = bert_option
# check if a path was alreadey added to os env table
if "model_folder" in os.environ:
self.config['model_folder'] = os.environ['model_folder']
else:
self.config['model_folder'] = os.path.join(self.project_dir, self.config['model_option'][self.bert_option]['model_folder'])
self.initialize()
except Exception as e:
logging.exception("Error occurred while Initializing BERT Model, please double check you have a config file " +" Info: " + str(e))
exit()
def initialize(self):
# Set up logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s - %(message)s",
datefmt="%d/%m/%Y %H:%M:%S",
level=logging.INFO)
# Check for GPUs
if torch.cuda.is_available():
self.config["use_cuda"] = True
self.config["cuda_device"] = torch.cuda.current_device()
logging.info("Using GPU (`%s`)", torch.cuda.get_device_name())
else:
self.config["use_cuda"] = False
self.config["cuda_device"] = "cpu"
logging.info("Using CPU")
self.model = AutoModelForSequenceClassification.from_pretrained(self.config["model_folder"], num_labels=len(self.config['classes']),output_hidden_states=True).to(self.config["cuda_device"])
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_folder"])
def clean_data(self,text:str):
return tc.pre_process(text,max_size=int(self.config["max_seq_length"]),remove_punctuation=True )
def sigmoid(self,x):
return 1 / (1 + math.exp(-x))
"""
Convert output of multi-class to probabilities between 0-1
"""
def raw_to_probs(self,vector):
return [self.sigmoid(x) for x in vector]
"""
Given a threshold, convert a vector of probabiities into predictions (0 or 1)
"""
def _threshold(self, vector:list, threshold:float=0.5) -> list:
logit_vector = [1 if x >=threshold else 0 for x in vector]
return logit_vector
"""
Pre-Process the data according to the same strategy used during training
"""
def pre_process(self,texts:list)-> list:
transformer_clean_data,transformer_clean_data_chunks = [],[]
for index,t in enumerate(texts):
clean_data, clean_data_chunks = self.clean_data(t)
transformer_clean_data.append(clean_data)
transformer_clean_data_chunks.append(clean_data_chunks)
return transformer_clean_data,transformer_clean_data_chunks
"""
Giving a list of texts, return the sentence embedding (CLS token from last BERT layer)
"""
def get_embeddings(self,texts:list)-> list:
transformer_clean_data,_ = self.pre_process(texts)
inputs = self.tokenizer(transformer_clean_data, return_tensors="pt", padding=True).to(self.config["cuda_device"])
outputs = self.model(**inputs,output_hidden_states=True)
last_hidden_states = outputs[1][-1].detach().cpu().numpy()
embeddings_output = np.asarray(last_hidden_states[:, 0])
return embeddings_output
"""
Giving a list of texts, run BERT prediction for each sample
If use_chunks is set to True (default), it chunks de data into chunks of max_size (set on config.py)
The final prediction for that sample is the concatenation of predictions from every chunck
Returns:
* Predictions
* Probabiities
* Sentence Embedding (CLS token from last BERT layer)
* Pre-Processed data used for Prediction
"""
def predict(self,texts:list, use_chunks=True)-> list:
transformer_clean_data,transformer_clean_data_chunks = self.pre_process(texts)
ids_chunks = []
# Flat all chunks (2d list) into 1d List (each chunck is feed separetly to prediction)
if use_chunks:
flatten_chunks = [j for sub in transformer_clean_data_chunks for j in sub]
ids = [[x]*len(transformer_clean_data_chunks[x]) for x in range(len(transformer_clean_data_chunks))]
ids_chunks = [j for sub in ids for j in sub]
data = flatten_chunks.copy()
else:
data = transformer_clean_data.copy()
inputs = self.tokenizer(data, return_tensors="pt", padding=True).to(self.config["cuda_device"])
outputs = self.model(**inputs,output_hidden_states=True)
# Post-Process output if using chunks --> Merge chunck Predictions into 1
if use_chunks:
raw_probs_chunks = outputs[0].detach().cpu().numpy()
probs_chunks = [self.raw_to_probs(x) for x in raw_probs_chunks]
probs = np.asarray([[0 for x in range(len(probs_chunks[0]))] for x in range(len(texts))],dtype=float)
for index, prob in enumerate(probs_chunks):
id_ = ids_chunks[index]
# if no predictions for such index yet, add (this is the base - avoid zero preds)
if np.sum(probs[id_])<=0:
probs[id_] = prob
else: # update to merge predictions
pred = np.asarray(self._threshold(vector=prob,threshold=self.config["threshold_prediction"]))
pos_pred_index = np.where(pred>0)[0]
if len(pos_pred_index)>0:
for pos in pos_pred_index:
probs[id_][pos] = prob[pos]
else:
raw_probs = outputs[0].detach().cpu().numpy()
probs = [self.raw_to_probs(x) for x in raw_probs]
predictions = [self._threshold(vector=pred,threshold=self.config["threshold_prediction"]) for pred in probs]
last_hidden_states = outputs[1][-1].detach().cpu().numpy()
embeddings_output = np.asarray(last_hidden_states[:, 0])
return predictions, probs, embeddings_output, transformer_clean_data
"""
Giving a list of text, it executes the branch prediction
This function call BERT Predict, pre-process predictions, and return the post-process branch prediction
Returns:
* Branch Prediction
* Sentence Embedding (CLS token from last BERT layer)
"""
def branch_prediction(self,texts:list)-> list:
out_pred = []
predictions, probs, embeddings_output, transformer_clean_data = self.predict(texts,use_chunks=True)
try:
for index, preds in enumerate(probs):
preds = np.asarray(preds)
pos = np.where(preds > 0.5)[0]
pred = []
if len(pos) >0:
for ind in pos:
pred.append({self.config['classes'][ind]: {"probability":preds[ind], "data":texts[index], "transformer_data": transformer_clean_data[index] }})
else:
pred.append({"No Prediction": {"probability":0, "data":texts[index], "transformer_data": transformer_clean_data[index]}})
out_pred.append(pred)
except Exception as e:
logging.exception("Error occurred on BERT model prediction" +" Info: " + str(e))
exit()
return out_pred,embeddings_output
"""
Cancer Diagnose Prediction Class.
This class is used to load each individual branch classifier
"""
class Branch_Classifier(object):
def __init__(self, config, branch_option:str="single_tfidf"):
self.config = config
self.branch_option = branch_option
self.project_dir = os.path.dirname(os.path.abspath(__file__))
try:
if "path_model" in os.environ:
self.config['path_model'] = os.environ['path_model']
else:
self.config['path_model'] = os.path.join(self.project_dir, self.config['model_option'][self.branch_option]['path_model'])
if "path_vectorizer" in os.environ:
self.config['path_vectorizer'] = os.environ['path_vectorizer']
else:
self.config['path_vectorizer'] = os.path.join(self.project_dir, self.config['model_option'][self.branch_option]['path_vectorizer'])
if "path_bigrmas" in os.environ:
self.config['path_bigrmas'] = os.environ['path_bigrmas']
else:
self.config['path_bigrmas'] = os.path.join(self.project_dir, self.config['model_option'][self.branch_option]['path_bigrmas'])
if "path_phrase_bigrams" in os.environ:
self.config['path_phrase_bigrams'] = os.environ['path_phrase_bigrams']
else:
self.config['path_phrase_bigrams'] = os.path.join(self.project_dir, self.config['model_option'][self.branch_option]['path_phrase_bigrams'])
except Exception as e:
logging.exception("Error occurred while reading config file. Please read config instructions" +" Info: " + str(e))
exit()
self.initialize()
def initialize(self):
try:
self.model = joblib.load(os.path.join(self.config['path_model'],self.config['model_option'][self.branch_option]['model']))
self.vectorizer = joblib.load(os.path.join(self.config['path_vectorizer'],self.config['model_option'][self.branch_option]['vectorizer']))
self.good_bigrams = pd.read_csv(os.path.join(self.config["path_bigrmas"],self.config['model_option'][self.branch_option]['bigrams']))['bigram'].to_list()
self.phrase_bigrams = phrases.Phrases.load(os.path.join(self.config["path_phrase_bigrams"],self.config['model_option'][self.branch_option]['phrase_bigrams']))
except Exception as e:
logging.exception("Error occurred while initializing models and vectorizer" +" Info: " + str(e))
exit()
"""
Only add specific Bi-grams (Pre-calculated during Training)
"""
def clean_bigram(self,data:list)-> list:
data_clean = []
for word in data:
if re.search("_",word) == None:
data_clean.append(word)
else: # gotta add the word without _ as well
if word in self.good_bigrams:
data_clean.append(word)
else:
data_clean.append(word.split("_")[0])
data_clean.append(word.split("_")[1])
return np.asarray(data_clean)
"""
Giving a list of text, pre-process and format the data
"""
def format_data(self,data:list)-> list:
try:
X = text_cleaning.text_cleaning(data, steam=False, lemma=True,single_input=True)[0]
### Add Bigrams and keep only the good ones(pre-selected)
X_bigrmas = self.phrase_bigrams[X]
data_clean = self.clean_bigram(X_bigrmas)
X_bigrams_clean = ' '.join(map(str, data_clean))
pre_processed = self.vectorizer.transform([X_bigrams_clean]).toarray(),X_bigrams_clean
except Exception as e:
logging.exception("Error occurred while formatting and cleaning data" +" Info: " + str(e))
exit()
return pre_processed
def html_escape(self,text):
return html.escape(text)
def predict(self, texts:list)-> list:
"""
Steps:
1) Run the predictions from higher-order
2) Based on the prediction, activate which brach(es) to send for final prediction (cancer characteristics)
3) For final prediction, create a word importance HTML for each input
"""
out_pred = {'predictions': {}, 'word_analysis':{},}
color = "234, 131, 4" # orange
try:
for t in texts:
text_tfidf,clean_data = self.format_data(t)
probs = self.model.predict_proba(text_tfidf).toarray()
predictions = self.model.predict(text_tfidf).toarray()
for index,preds in enumerate(predictions):
pos = np.where(preds > 0.5)[0]
pred = []
if len(pos) >0:
for ind in pos:
highlighted_html_text = []
weigts = self.model.classifiers_[ind].feature_importances_
word_weights = {}
words = clean_data.split()
min_new = 0
max_new = 100
min_old = np.min(weigts)
max_old = np.max(weigts)
for w in words:
found = False
for word, key in self.vectorizer.vocabulary_.items():
if w == word:
found = True
# rescale weights
weight = ( (max_new - min_new) / (max_old - min_old) * (weigts[key] - max_old) + max_new)
if weight <0.5:
weight = 0
if "_" in w: # add for each word
w1,w2 = w.split("_")
word_weights[w1] = weight
word_weights[w2] = weight
if w2 =="one":
word_weights["1"] = weight
word_weights["i"] = weight
if w2 =="two":
word_weights["2"] = weight
word_weights["ii"] = weight
if w2 =="three":
word_weights["3"] = weight
word_weights["iii"] = weight
else:
word_weights[w] = weight
if found == False: # some words aren't presented in the model
word_weights[w] = 0
words = word_tokenize(t.lower().replace("-", " - ").replace("_", " ").replace(".", " . ").replace(",", " , ").replace("(", " ( ").replace(")", " ) "))
for i,w in enumerate(words):
if w not in word_weights or w=='-' or w==',' or w=='.' or w=="(" or w==")":
word_weights[w] = 0
highlighted_html_text.append(w)
else:
weight = 0 if word_weights[w] <1 else word_weights[w]
highlighted_html_text.append('<span font-size:40px; ; style="background-color:rgba(' + color + ',' + str(weight) + ');">' + self.html_escape(w) + '</span>')
highlighted_html_text = ' '.join(highlighted_html_text)
#pred.append({ "predictions": {self.config['classes'][ind]: {"probability":probs[index][ind]}},"word_analysis": {"discriminator_data": clean_data,"word_importance": word_weights, "highlighted_html_text":highlighted_html_text}})
out_pred["predictions"][self.config['classes'][ind]] = {"probability":probs[index][ind]}
out_pred["word_analysis"] = {"discriminator_data": clean_data,"word_importance": word_weights, "highlighted_html_text":highlighted_html_text}
else:
out_pred["predictions"] = {"Unkown": {"probability":0.5}}
out_pred["word_analysis"] = {"discriminator_data": clean_data,"word_importance": {x:0 for x in t.split()}, "highlighted_html_text": " ".join(x for x in t.split())}
#pred.append({"predictions": {"Unkown": {"probability":0.5}}, "word_analysis": {"discriminator_data": clean_data,"word_importance": {x:0 for x in t.split()}, "highlighted_html_text": " ".join(x for x in t.split())}})
#out_pred.append(pred)
except Exception as e:
logging.exception("Error occurred on model prediction" +" Info: " + str(e))
exit()
return out_pred
class LIME_Interpretability(object):
"""
Class for LIME Analysis
"""
def __init__(self, label_colors = { "positive": "234, 131, 4", # orange
"negative":'65, 137, 225', # blue
}):
self.color_classes = label_colors
# function to normalize, if applicable
def __normalize_MinMax(self,arr, t_min=0, t_max=1):
norm_arr = []
diff = t_max - t_min
diff_arr = max(arr) - min(arr)
for i in arr:
temp = (((i - min(arr)) * diff) / diff_arr) + t_min
norm_arr.append(temp)
return norm_arr
def __html_escape(self,text):
return html.escape(text)
def __add_bigrams(self,txt):
fixed_bigrams = [ [' gradeone ', 'grade 1', 'grade i', 'grade I', 'grade one',],
[' gradetwo ', 'grade 2', 'grade ii', 'grade II', 'grade two', ],
[' gradethree ', 'grade 3' , 'grade iii', 'grade III', 'grade three']]
for b in fixed_bigrams:
sub = ""
not_first = False
for x in b[1:]:
if not_first:
sub += "|"
not_first = True
sub += str(x) + "|" + str(x) + " " + "|" + " " + str(x) + "|" + " " + str(x)
txt = re.sub(sub, b[0], txt)
# Removing multiple spaces
txt = re.sub(r'\s+', ' ', txt)
txt = re.sub(' +', ' ', txt)
return txt
def __highlight_full_data(self,lime_weights, data, exp_labels,class_names):
words_p = [x[0] for x in lime_weights if x[1]>0]
weights_p = np.asarray([x[1] for x in lime_weights if x[1] >0])
if len(weights_p) >1:
weights_p = self.__normalize_MinMax(weights_p, t_min=min(weights_p), t_max=1)
else:
weights_p = [1]
words_n = [x[0] for x in lime_weights if x[1]<0]
weights_n = np.asarray([x[1] for x in lime_weights if x[1] <0])
# weights_n = self.__normalize_MinMax(weights_n, t_min=max(weights_p), t_max=-0.8)
labels = exp_labels
pred = class_names[labels[0]]
corr_pred = class_names[labels[1]] # negative lime weights
# positive values
df_coeff = pd.DataFrame(
{'word': words_p,
'num_code': weights_p
})
word_to_coeff_mapping_p = {}
for row in df_coeff.iterrows():
row = row[1]
word_to_coeff_mapping_p[row[0]] = row[1]
# negative values
df_coeff = pd.DataFrame(
{'word': words_n,
'num_code': weights_n
})
word_to_coeff_mapping_n = {}
for row in df_coeff.iterrows():
row = row[1]
word_to_coeff_mapping_n[row[0]] = row[1]
max_alpha = 1
highlighted_text = []
data = re.sub("-"," ", data)
data = re.sub("/","", data)
for word in word_tokenize(self.__add_bigrams(data)):
if word.lower() in word_to_coeff_mapping_p or word.lower() in word_to_coeff_mapping_n:
if word.lower() in word_to_coeff_mapping_p:
weight = word_to_coeff_mapping_p[word.lower()]
else:
weight = word_to_coeff_mapping_n[word.lower()]
if weight >0:
color = self.color_classes["positive"]
else:
color = self.color_classes["negative"]
weight *= -1
weight *=10
highlighted_text.append('<span font-size:40px; ; style="background-color:rgba(' + color + ',' + str(weight) + ');">' + self.__html_escape(word) + '</span>')
else:
highlighted_text.append(word)
highlighted_text = ' '.join(highlighted_text)
return highlighted_text
def lime_analysis(self,model,data_original, data_clean, num_features=30, num_samples=50, top_labels=2,
class_names=['ibc', 'nbc', 'isc', 'bll', 'hrl', 'benign', 'negative']):
# LIME Predictor Function
def predict(texts):
results = []
for text in texts:
predictions, probs, embeddings_output, transformer_clean_data = model.predict([text],use_chunks=False)
results.append(probs[0])
return np.array(results)
explainer = LimeTextExplainer(class_names=class_names)
exp = explainer.explain_instance(data_clean, predict, num_features=num_features,
num_samples=num_samples, top_labels=top_labels)
l = exp.available_labels()
run_info = exp.as_list(l[0])
return self.__highlight_full_data(run_info, data_original, l,class_names)
"""
The pipeline is responsible to consolidate the output of all models (higher order and all labels hierarchy)
It takes a string as input, and returns a jason with higher-order(Severity) and all labels(Diagnose) predictions and their probability score
"""
class Pipeline(object):
def __init__(self, bert_option:str="clinicalBERT", branch_option:str="single_tfidf"):
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(filename)s - %(message)s",datefmt="%d/%m/%Y %H:%M:%S",level=logging.INFO)
if branch_option =="single_vectorizer":
self.branch_option = "single_tfidf"
elif branch_option =="branch_vectorizer":
self.branch_option = "branch_tfidf"
else:
self.branch_option=branch_option
self.bert_option=bert_option
try:
self.config = config_file()
self.BERT_config = self.config['BERT_config']
self.ibc_config = self.config['ibc_config']
self.isc_config = self.config['isc_config']
self.hrl_config = self.config['hrl_config']
self.bll_config = self.config['bll_config']
self.benign_config = self.config['benign_config']
self.nbc_config = self.config['nbc_config']
except Exception as e:
logging.exception("Error occurred while initializing models and vectorizer" +" Info: " + str(e))
exit()
self.lime_interpretability = LIME_Interpretability()
self.initialize()
def initialize(self):
try:
self.bert_model = BERT_Model(self.BERT_config, self.bert_option)
try:
self.ibc_branch = Branch_Classifier(self.ibc_config,branch_option=self.branch_option)
except Exception as e:
logging.exception("Error occurred while Initializing IBC branch Model, please double check you have a config file " +" Info: " + str(e))
exit()
try:
self.isc_branch = Branch_Classifier(self.isc_config,branch_option=self.branch_option)
except Exception as e:
logging.exception("Error occurred while Initializing isc branch Model, please double check you have a config file " +" Info: " + str(e))
exit()
try:
self.hrl_branch = Branch_Classifier(self.hrl_config,branch_option=self.branch_option)
except Exception as e:
logging.exception("Error occurred while Initializing hrl branch Model, please double check you have a config file " +" Info: " + str(e))
exit()
try:
self.bll_branch = Branch_Classifier(self.bll_config,branch_option=self.branch_option)
except Exception as e:
logging.exception("Error occurred while Initializing bll branch Model, please double check you have a config file " +" Info: " + str(e))
exit()
try:
self.benign_branch = Branch_Classifier(self.benign_config,branch_option=self.branch_option)
except Exception as e:
logging.exception("Error occurred while Initializing benign branch Model, please double check you have a config file " +" Info: " + str(e))
exit()
try:
self.nbc_branch = Branch_Classifier(self.nbc_config,branch_option=self.branch_option)
except Exception as e:
logging.exception("Error occurred while Initializing nbc branch Model, please double check you have a config file " +" Info: " + str(e))
exit()
self.all_label_models = [self.ibc_branch,self.nbc_branch,self.isc_branch,self.bll_branch,self.hrl_branch,self.benign_branch]
except Exception as e:
logging.exception("Error occurred while Initializing Pipeline, please double check you have a config file " +" Info: " + str(e))
exit()
"""
Run the entire pipeline
Steps:
1) First, we run the Severity Prediction (BERT)
2) Given each prediction for each sample, we then:
2.1) Run the corresponding Diagnose Branch Prediction
2.2) Merge every branch prediction
3) Merge Every Severity and Branch Prediction
Inputs:
* Text
Output:
* Predictions (Predictions + Probabilites)
* Sentence Embedding
"""
def run(self,input_text:str):
"""
First, get the severity prediction (higher order branch)
"""
predictions,embeddings_output = self.bert_model.branch_prediction([input_text])
predictions = predictions[0]
for pred in predictions:
for higher_order, sub_arr in pred.items():
# Check which branch it belongs to
if higher_order in ["Negative","No Prediction"]:
pred[higher_order]['diagnose'] = {higher_order: {"probability":sub_arr['probability']}}
pred[higher_order]["word_analysis"] = {"discriminator_data": "Not Used", "word_importance": {x:0 for x in input_text.split()}, "highlighted_html_text": " ".join(x for x in input_text.split())}
# For each Severity, run the corresponding Branch Prediction
else:
model = self.all_label_models[self.bert_model.config['classes'].index(higher_order)]
out_pred = model.predict([input_text])
pred[higher_order]['diagnose'] = out_pred['predictions']
pred[higher_order]['word_analysis'] = out_pred['word_analysis']
return predictions,embeddings_output
def bert_interpretability(self, input_text:str):
clean_data,_ = self.bert_model.clean_data(input_text)
return self.lime_interpretability.lime_analysis(self.bert_model,input_text, clean_data, class_names=self.bert_model.config['classes'])
if __name__ == '__main__':
exit()
|