Last commit not found
# app.py | |
import os | |
import openai | |
import gradio as gr | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.document_loaders import PyMuPDFLoader, PyPDFLoader | |
from langchain.vectorstores import Chroma | |
from langchain_community.embeddings import OpenAIEmbeddings | |
from langchain_community.chat_models import ChatOpenAI | |
import shutil # 用於文件複製 | |
import logging | |
# 設置日誌配置 | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# 獲取 OpenAI API 密鑰(初始不使用固定密鑰) | |
api_key_env = os.getenv("OPENAI_API_KEY") | |
if api_key_env: | |
openai.api_key = api_key_env | |
logger.info("OpenAI API 密鑰已設置。") | |
else: | |
logger.info("未設置固定的 OpenAI API 密鑰。將使用使用者提供的密鑰。") | |
# 確保向量資料庫目錄存在且有寫入權限 | |
VECTORDB_DIR = os.path.abspath("./data") | |
os.makedirs(VECTORDB_DIR, exist_ok=True) | |
os.chmod(VECTORDB_DIR, 0o755) # 設置適當的權限 | |
logger.info(f"VECTORDB_DIR set to: {VECTORDB_DIR}") | |
# 定義測試 PDF 加載器的函數 | |
def test_pdf_loader(file_path, loader_type='PyMuPDFLoader'): | |
logger.info(f"Testing PDF loader ({loader_type}) with file: {file_path}") | |
try: | |
if loader_type == 'PyMuPDFLoader': | |
loader = PyMuPDFLoader(file_path) | |
elif loader_type == 'PyPDFLoader': | |
loader = PyPDFLoader(file_path) | |
else: | |
logger.error(f"Unknown loader type: {loader_type}") | |
return | |
loaded_docs = loader.load() | |
if loaded_docs: | |
logger.info(f"Successfully loaded {file_path} with {len(loaded_docs)} documents.") | |
logger.info(f"Document content (first 500 chars): {loaded_docs[0].page_content[:500]}") | |
else: | |
logger.error(f"No documents loaded from {file_path}.") | |
except Exception as e: | |
logger.error(f"Error loading {file_path} with {loader_type}: {e}") | |
# 定義載入和處理 PDF 文件的函數 | |
def load_and_process_documents(file_paths, loader_type='PyMuPDFLoader', api_key=None): | |
if not api_key: | |
raise ValueError("未提供 OpenAI API 密鑰。") | |
documents = [] | |
logger.info("開始載入上傳的 PDF 文件。") | |
for file_path in file_paths: | |
logger.info(f"載入 PDF 文件: {file_path}") | |
if not os.path.exists(file_path): | |
logger.error(f"文件不存在: {file_path}") | |
continue | |
try: | |
if loader_type == 'PyMuPDFLoader': | |
loader = PyMuPDFLoader(file_path) | |
elif loader_type == 'PyPDFLoader': | |
loader = PyPDFLoader(file_path) | |
else: | |
logger.error(f"Unknown loader type: {loader_type}") | |
continue | |
loaded_docs = loader.load() | |
if loaded_docs: | |
logger.info(f"載入 {file_path} 成功,包含 {len(loaded_docs)} 個文檔。") | |
# 打印第一個文檔的部分內容以確認 | |
logger.info(f"第一個文檔內容: {loaded_docs[0].page_content[:500]}") | |
documents.extend(loaded_docs) | |
else: | |
logger.error(f"載入 {file_path} 但未找到任何文檔。") | |
except Exception as e: | |
logger.error(f"載入 {file_path} 時出現錯誤: {e}") | |
if not documents: | |
raise ValueError("沒有找到任何 PDF 文件或 PDF 文件無法載入。") | |
else: | |
logger.info(f"總共載入了 {len(documents)} 個文檔。") | |
# 分割長文本 | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=50) | |
documents = text_splitter.split_documents(documents) | |
logger.info(f"分割後的文檔數量: {len(documents)}") | |
if not documents: | |
raise ValueError("分割後的文檔列表為空。請檢查 PDF 文件內容。") | |
# 初始化向量資料庫 | |
try: | |
embeddings = OpenAIEmbeddings(openai_api_key=api_key) # 使用使用者的 API 密鑰 | |
logger.info("初始化 OpenAIEmbeddings 成功。") | |
except Exception as e: | |
raise ValueError(f"初始化 OpenAIEmbeddings 時出現錯誤: {e}") | |
try: | |
vectordb = Chroma.from_documents( | |
documents, | |
embedding=embeddings, | |
persist_directory=VECTORDB_DIR | |
) | |
logger.info("初始化 Chroma 向量資料庫成功。") | |
except Exception as e: | |
raise ValueError(f"初始化 Chroma 向量資料庫時出現錯誤: {e}") | |
return vectordb | |
# 定義聊天處理函數 | |
def handle_query(user_message, chat_history, vectordb, api_key): | |
try: | |
if not user_message: | |
return chat_history | |
# 添加角色指令前綴 | |
preface = """ | |
指令: 以繁體中文回答問題,200字以內。你是一位專業心理學家與調酒師,專精於 MBTI 人格與經典調酒主題。 | |
非相關問題,請回應:「目前僅支援 MBTI 分析與經典調酒主題。」。 | |
""" | |
query = f"{preface} 查詢內容:{user_message}" | |
# 初始化 ConversationalRetrievalChain,並傳遞 openai_api_key | |
pdf_qa = ConversationalRetrievalChain.from_llm( | |
ChatOpenAI(temperature=0.7, model="gpt-4", openai_api_key=api_key), | |
retriever=vectordb.as_retriever(search_kwargs={'k': 6}), | |
return_source_documents=True | |
) | |
# 呼叫模型並處理查詢 | |
result = pdf_qa.invoke({"question": query, "chat_history": chat_history}) | |
# 檢查結果並更新聊天歷史 | |
if "answer" in result: | |
chat_history = chat_history + [(user_message, result["answer"])] | |
else: | |
chat_history = chat_history + [(user_message, "抱歉,未能獲得有效回應。")] | |
return chat_history | |
except Exception as e: | |
logger.error(f"Error in handle_query: {e}") | |
return chat_history + [("系統", f"出現錯誤: {str(e)}")] | |
# 定義保存 API 密鑰的函數 | |
def save_api_key(api_key, state): | |
if not api_key.startswith("sk-"): | |
return "請輸入有效的 OpenAI API 密鑰。", state | |
state['api_key'] = api_key | |
logger.info("使用者已保存自己的 OpenAI API 密鑰。") | |
return "API 密鑰已成功保存。您現在可以上傳 PDF 文件並開始提問。", state | |
# 定義 Gradio 的處理函數 | |
def process_files(files, state): | |
logger.info("process_files called") | |
if files: | |
try: | |
# 檢查是否已保存 API 密鑰 | |
api_key = state.get('api_key', None) | |
if not api_key: | |
logger.error("使用者未提供 OpenAI API 密鑰。") | |
return "請先在「設定 API 密鑰」標籤中輸入並保存您的 OpenAI API 密鑰。", state | |
logger.info(f"Received {len(files)} files") | |
saved_file_paths = [] | |
for idx, file_data in enumerate(files): | |
# 為每個文件分配唯一的文件名 | |
filename = f"uploaded_{idx}.pdf" | |
save_path = os.path.join(VECTORDB_DIR, filename) | |
with open(save_path, "wb") as f: | |
f.write(file_data) | |
# 確認文件是否存在並檢查文件大小 | |
if os.path.exists(save_path): | |
file_size = os.path.getsize(save_path) | |
if file_size > 0: | |
logger.info(f"File successfully saved to: {save_path} (Size: {file_size} bytes)") | |
else: | |
logger.error(f"File saved to {save_path} is empty.") | |
raise ValueError(f"上傳的文件 {filename} 為空。") | |
else: | |
logger.error(f"Failed to save file to: {save_path}") | |
raise FileNotFoundError(f"無法保存文件到 {save_path}") | |
saved_file_paths.append(save_path) | |
# 測試 PDF 加載器,先用 PyMuPDFLoader,再用 PyPDFLoader | |
try: | |
test_pdf_loader(save_path, loader_type='PyMuPDFLoader') | |
except Exception as e: | |
logger.error(f"PyMuPDFLoader failed: {e}") | |
logger.info("Attempting to load with PyPDFLoader...") | |
test_pdf_loader(save_path, loader_type='PyPDFLoader') | |
# 列出 VECTORDB_DIR 中的所有文件 | |
saved_files = os.listdir(VECTORDB_DIR) | |
logger.info(f"Files in VECTORDB_DIR ({VECTORDB_DIR}): {saved_files}") | |
# 列出文件大小 | |
file_sizes = {file: os.path.getsize(os.path.join(VECTORDB_DIR, file)) for file in saved_files} | |
logger.info(f"File sizes in VECTORDB_DIR: {file_sizes}") | |
vectordb = load_and_process_documents(saved_file_paths, loader_type='PyMuPDFLoader', api_key=api_key) | |
state['vectordb'] = vectordb | |
return "PDF 文件已成功上傳並處理。您現在可以開始提問。", state | |
except Exception as e: | |
logger.error(f"Error in process_files: {e}") | |
return f"處理文件時出現錯誤: {e}", state | |
else: | |
return "請上傳至少一個 PDF 文件。", state | |
def chat_interface(user_message, chat_history, state): | |
vectordb = state.get('vectordb', None) | |
api_key = state.get('api_key', None) | |
if not vectordb: | |
return chat_history, state, "請先上傳 PDF 文件以進行處理。" | |
if not api_key: | |
return chat_history, state, "請先在「設定 API 密鑰」標籤中輸入並保存您的 OpenAI API 密鑰。" | |
# 處理查詢 | |
updated_history = handle_query(user_message, chat_history, vectordb, api_key) | |
return updated_history, state, "" | |
# 設計 Gradio 介面 | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center;'>MBTI 與經典調酒 AI 助理</h1>") | |
# 定義共享的 state | |
state = gr.State({"vectordb": None, "api_key": None}) | |
with gr.Tab("設定 API 密鑰"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
api_key_input = gr.Textbox( | |
label="輸入您的 OpenAI API 密鑰", | |
placeholder="sk-...", | |
type="password", | |
interactive=True | |
) | |
save_api_key_btn = gr.Button("保存 API 密鑰") | |
api_key_status = gr.Textbox(label="狀態", interactive=False) | |
with gr.Tab("上傳 PDF 文件"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
upload = gr.File( | |
file_count="multiple", | |
file_types=[".pdf"], | |
label="上傳 PDF 文件", | |
interactive=True, | |
type="binary" # 修改為 'binary' | |
) | |
upload_btn = gr.Button("上傳並處理") | |
upload_status = gr.Textbox(label="上傳狀態", interactive=False) | |
with gr.Tab("聊天機器人"): | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=0.85): | |
txt = gr.Textbox(show_label=False, placeholder="請輸入您的問題...") | |
with gr.Column(scale=0.15, min_width=0): | |
submit_btn = gr.Button("提問") | |
# 綁定提問按鈕 | |
submit_btn.click( | |
chat_interface, | |
inputs=[txt, chatbot, state], | |
outputs=[chatbot, state, txt] | |
) | |
# 綁定輸入框的提交事件 | |
txt.submit( | |
chat_interface, | |
inputs=[txt, chatbot, state], | |
outputs=[chatbot, state, txt] | |
) | |
# 綁定保存 API 密鑰按鈕 | |
save_api_key_btn.click( | |
save_api_key, | |
inputs=[api_key_input, state], | |
outputs=[api_key_status, state] | |
) | |
# 綁定上傳按鈕 | |
upload_btn.click( | |
process_files, | |
inputs=[upload, state], | |
outputs=[upload_status, state] | |
) | |
# 啟動 Gradio 應用 | |
demo.launch() |