import time import gradio as gr import openai import os import requests import json # 從 Hugging Face secrets 中讀取 OpenAI API 金鑰 api_key = os.getenv('OPENAI_API_KEY') if not api_key: raise ValueError("請設置 'OPENAI_API_KEY' 環境變數") # OpenAI API key openai_api_key = api_key # 將 Gradio 的歷史紀錄轉換為 OpenAI 格式 def transform_history(history): new_history = [] for chat in history: new_history.append({"role": "user", "content": chat[0]}) new_history.append({"role": "assistant", "content": chat[1]}) return new_history # 回應生成函數,使用 requests 來呼叫 OpenAI API def response(message, history): global conversation_history # 將 Gradio 的歷史紀錄轉換為 OpenAI 的格式 conversation_history = transform_history(history) url = "https://api.openai.com/v1/chat/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } # 設置初始的 prompt_instruction prompt_instruction = """ 你是企業的專業HR助教,名字叫做 '小清' ,要以專業、熱情、有耐心且親切的的口氣,與企業員工互動並解答人力資源相關問題: """ prompt_to_gpt = prompt_instruction + message # 新增至 conversation_history conversation_history.append({"role": "system", "content": prompt_to_gpt}) # 設置請求的數據 data = { "model": "gpt-4o", # 確認使用的模型是 gpt-4 或 gpt-3.5-turbo "messages": conversation_history, "max_tokens": 200 # 控制生成的最大令牌數 } # 發送請求到 OpenAI API response = requests.post(url, headers=headers, data=json.dumps(data)) # 處理回應 response_json = response.json() # 提取模型的回應並加入歷史紀錄 if 'choices' in response_json and len(response_json['choices']) > 0: model_response = response_json['choices'][0]['message']['content'] conversation_history.append({"role": "assistant", "content": model_response}) # 逐字回傳生成的文字,實現打字機效果 for i in range(len(model_response)): time.sleep(0.05) # 每個字符間隔 0.05 秒 yield model_response[: i+1] else: yield "Error: No response from the model." # 建立 Gradio 聊天界面 gr.ChatInterface(response, title='OpenAI Chat', textbox=gr.Textbox(placeholder="Question to OpenAI")).launch(share=True)