File size: 5,158 Bytes
ec3b96a 1f2f15c 166b6db 2509eb1 1f2f15c 547b516 1f2f15c c8136d1 e4b31e4 1f2f15c 3566189 1f2f15c e4b31e4 93780aa 3566189 b879202 78d479e 77e039c ec3b96a e4b31e4 6e59fbf ec3b96a 1f2f15c ec3b96a e4b31e4 3566189 b879202 1f2f15c e4b31e4 b879202 1f2f15c b879202 1f2f15c e4b31e4 1f2f15c ec3b96a 1f2f15c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import math
import spaces
import torch
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
def set_timesteps_patched(self, num_inference_steps: int, device = None):
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
sigmas = (sigmas).to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
EDMEulerScheduler.set_timesteps = set_timesteps_patched
pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
edit_file, num_in_channels=8
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")
pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_normal.to("cuda")
@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0]
@spaces.GPU
def run_edit(image, prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
resolution = 1024
image.resize((resolution, resolution))
return pipe_edit(prompt=prompt,image=image,height=resolution,width=resolution,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"]
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]]
with gr.Blocks(css=css) as demo:
gr.Markdown('''# Pixio Edit Demo
Pixio Edit demo for CosXL, a new Pixio SDXL model tuned to produce full color range images. Pixio Edit allows you to perform edits on images.
''')
with gr.Tab("CosXL"):
with gr.Group():
with gr.Row():
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
button_normal = gr.Button("Generate", min_width=120)
output_normal = gr.Image(label="Your result image", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_normal = gr.Textbox(label="Negative Prompt")
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True)
with gr.Tab("CosXL Edit"):
with gr.Group():
image_edit = gr.Image(label="Image you would like to edit", type="pil")
with gr.Row():
prompt_edit = gr.Textbox(show_label=False, scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
button_edit = gr.Button("Generate", min_width=120)
output_edit = gr.Image(label="Your result image", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_edit = gr.Textbox(label="Negative Prompt")
guidance_scale_edit = gr.Number(label="Guidance Scale", value=7)
gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit], outputs=[output_edit], cache_examples=True)
button_edit.click(
)
gr.on(
triggers=[
button_normal.click,
prompt_normal.submit
],
fn=run_normal,
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
outputs=[output_normal],
)
gr.on(
triggers=[
button_edit.click,
prompt_edit.submit
],
fn=run_edit,
inputs=[image_edit, prompt_edit, negative_prompt_edit, guidance_scale_edit],
outputs=[output_edit]
)
if __name__ == "__main__":
demo.launch(share=True)
|