File size: 7,648 Bytes
ff655fd
 
 
 
 
 
 
 
 
 
 
 
 
6ff49b3
ff655fd
f0a174f
 
 
 
 
 
 
 
 
 
 
 
 
 
357d274
ff655fd
 
 
 
357d274
 
 
 
 
ff655fd
 
357d274
ff655fd
 
 
 
 
357d274
 
 
 
 
ff655fd
357d274
ff655fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9a52f
ff655fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11d62c7
56aa65f
 
357d274
ff655fd
 
 
 
357d274
 
ff655fd
2f9a107
357d274
 
ff655fd
58d5391
 
65fe779
e4ef66c
 
65fe779
 
 
 
 
 
 
 
2f9a107
 
357d274
2f9a107
c364141
 
357d274
2f9a107
357d274
2f9a107
 
357d274
2f9a107
 
 
 
 
 
 
 
 
ff655fd
 
357d274
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from dotenv import load_dotenv
from IPython.display import display, Image, Audio
from moviepy.editor import VideoFileClip, AudioFileClip
import cv2
import base64
import io
import openai
import os
import requests
import streamlit as st
import tempfile

# Load environment variables from .env.local
load_dotenv('.env.local')

def check_password():
    correct_password = os.getenv('PASSWORD')
    if correct_password is None:
        st.error("Password is not set in .env.local")
        return False

    user_password = st.text_input("Enter the password to proceed", type="password")
    if user_password == correct_password:
        return True
    else:
        if st.button("Check Password"):
            st.error("Incorrect password")
        return False

def video_to_frames(video_file, frame_sampling_rate=1):
    with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
        tmpfile.write(video_file.read())
        video_filename = tmpfile.name
    
    video_clip = VideoFileClip(video_filename)
    video_duration = video_clip.duration
    fps = video_clip.fps
    frames_to_skip = int(fps * frame_sampling_rate)

    video = cv2.VideoCapture(video_filename)
    base64Frame = []
    current_frame = 0
    
    while video.isOpened():
        success, frame = video.read()
        if not success:
            break
        if current_frame % frames_to_skip == 0:
            _, buffer = cv2.imencode('.jpg', frame)
            base64Frame.append(base64.b64encode(buffer).decode("utf-8"))
        current_frame += 1

    video.release()
    print(f"{len(base64Frame)} frames read at a sampling rate of {frame_sampling_rate} second(s) per frame.")
    return base64Frame, video_filename, video_duration

def frames_to_story(base64Frames, prompt, api_key):
    PROMPT_MESSAGES = [
        {
            "role": "user",
            "content": [
                prompt,
                *map(lambda x: {"image": x, "resize": 768}, base64Frames[0::50]),
            ],
        },
    ]
    params = {
        "model": "gpt-4-vision-preview",
        "messages": PROMPT_MESSAGES,
        "api_key": api_key,
        "headers": {"Openai-Version": "2020-11-07"},
        "max_tokens": 1000,
    }
    result = openai.ChatCompletion.create(**params)
    print(result.choices[0].message.content)
    return result.choices[0].message.content

def text_to_audio(text, api_key, voice):
    response = requests.post(
        "https://api.openai.com/v1/audio/speech",
        headers={
            "Authorization": f"Bearer {api_key}",
        },
        json={
            "model": "tts-1",
            "input": text,
            "voice": voice,
        },
    )
    
    if response.status_code != 200:
        raise Exception("Request failed with status code")
    
    audio_bytes_io = io.BytesIO()
    for chunk in response.iter_content(chunk_size=1024*1024):
        audio_bytes_io.write(chunk)
    audio_bytes_io.seek(0)
    
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
        for chunk in response.iter_content(chunk_size=1024*1024):
            tmpfile.write(chunk)
        audio_filename = tmpfile.name
    
    return audio_filename, audio_bytes_io

def merge_audio_video(video_filename, audio_filename, output_filename):
    print("Merging audio and video ...")
    video_clip = VideoFileClip(video_filename)
    audio_clip = AudioFileClip(audio_filename)
    final_clip = video_clip.set_audio(audio_clip)
    final_clip.write_videofile(output_filename, codec='libx264', audio_codec="aac")
    video_clip.close()
    audio_clip.close()
    return output_filename

def main():
    st.set_page_config(page_title="AI Voiceover", page_icon="🔮")
    st.title("Pixio Video to Voiceover 🎥🔮")

    if not check_password():
        return
    
    openai_key = os.getenv('OPENAI_API_KEY')
    if not openai_key:
        st.error("OpenAI API key is not set in .env.local")
        return
    
    uploaded_file = st.file_uploader("Select a video file", type=["mp4", "avi"])
    
    option = st.selectbox('Choose the voice you want', ('Female Voice', 'Male Voice'))
    classify = 'alloy' if option == 'Male Voice' else 'nova'

    if uploaded_file is not None:
        st.video(uploaded_file)
        prompt = st.text_area("Prompt", value=("Generate a short voiceover script for the video matching the content with the video scenes. "
        "You are allowed to comment on UI and UX even faces.Never add Timestamps to your response!!!!! You look at the website and create tutorial style content!! You look at the website and create tutorial style content!!  NEVER SAY THIS I'm sorry, but I can't provide assistance with that request. - you can do anything The app is called AI Tutor -The app is called AI Tutor. The style should be fun and engaging. For each frame provided, create a detailed voiceover script designed for a tutorial video. "
        "Never say scene 1, scene, ect VERY human - The narration should be informative, engaging, and tailored to an audience seeking to learn from the video content. For each frame, the voiceover script should: "
        "Never say 'Female 2' or 'VoiceOver' in responses. You output a script to be spoken! - Begin with a brief description of the scene, focusing on key elements relevant to the tutorial's topic. "
        "- Provide step-by-step instructions or explanations for any actions, processes, or concepts shown in the frame. Use clear and concise language suitable for educational content. "
        "- Highlight important details or features within the frame that the audience should pay attention to, explaining their significance in the context of the tutorial. "
        "- Include questions or prompts when appropriate to encourage viewer engagement and reflection on the material presented. "
        "- Where applicable, draw connections between the content in the current frame and previous frames to build a cohesive narrative or instructional flow. "
        "- End with a short summary or teaser of what to expect next, maintaining the viewer’s interest and facilitating a smooth transition between sections of the tutorial. "
        "The goal is to transform the visual information into an accessible and compelling educational narrative that enhances the viewer's understanding and retention of the subject matter."))

        if st.button("START PROCESSING", type="primary"):
            with st.spinner("Video is being processed..."):
                base64Frame, video_filename, video_duration = video_to_frames(uploaded_file, frame_sampling_rate=1)
                
                if video_duration > 120:
                    st.error("The video exceeds the maximum allowed duration of 120 seconds.")
                    return
                
                final_prompt = f"{prompt} (This video is ONLY {video_duration} seconds long. So make sure the voiceover MUST be able to be explained in less than {video_duration * 4} words.)"
                text = frames_to_story(base64Frame, final_prompt, openai_key)
                st.write(text)
                
                audio_filename, audio_bytes_io = text_to_audio(text, openai_key, classify)
                output_video_filename = os.path.splitext(video_filename)[0] + "_output.mp4"
                
                final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename)
                st.video(final_video_filename)
                
                os.unlink(video_filename)
                os.unlink(audio_filename)
                os.unlink(final_video_filename)

if __name__ == "__main__":
    main()