Spaces:
Sleeping
Sleeping
File size: 7,648 Bytes
ff655fd 6ff49b3 ff655fd f0a174f 357d274 ff655fd 357d274 ff655fd 357d274 ff655fd 357d274 ff655fd 357d274 ff655fd 4b9a52f ff655fd 11d62c7 56aa65f 357d274 ff655fd 357d274 ff655fd 2f9a107 357d274 ff655fd 58d5391 65fe779 e4ef66c 65fe779 2f9a107 357d274 2f9a107 c364141 357d274 2f9a107 357d274 2f9a107 357d274 2f9a107 ff655fd 357d274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from dotenv import load_dotenv
from IPython.display import display, Image, Audio
from moviepy.editor import VideoFileClip, AudioFileClip
import cv2
import base64
import io
import openai
import os
import requests
import streamlit as st
import tempfile
# Load environment variables from .env.local
load_dotenv('.env.local')
def check_password():
correct_password = os.getenv('PASSWORD')
if correct_password is None:
st.error("Password is not set in .env.local")
return False
user_password = st.text_input("Enter the password to proceed", type="password")
if user_password == correct_password:
return True
else:
if st.button("Check Password"):
st.error("Incorrect password")
return False
def video_to_frames(video_file, frame_sampling_rate=1):
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
tmpfile.write(video_file.read())
video_filename = tmpfile.name
video_clip = VideoFileClip(video_filename)
video_duration = video_clip.duration
fps = video_clip.fps
frames_to_skip = int(fps * frame_sampling_rate)
video = cv2.VideoCapture(video_filename)
base64Frame = []
current_frame = 0
while video.isOpened():
success, frame = video.read()
if not success:
break
if current_frame % frames_to_skip == 0:
_, buffer = cv2.imencode('.jpg', frame)
base64Frame.append(base64.b64encode(buffer).decode("utf-8"))
current_frame += 1
video.release()
print(f"{len(base64Frame)} frames read at a sampling rate of {frame_sampling_rate} second(s) per frame.")
return base64Frame, video_filename, video_duration
def frames_to_story(base64Frames, prompt, api_key):
PROMPT_MESSAGES = [
{
"role": "user",
"content": [
prompt,
*map(lambda x: {"image": x, "resize": 768}, base64Frames[0::50]),
],
},
]
params = {
"model": "gpt-4-vision-preview",
"messages": PROMPT_MESSAGES,
"api_key": api_key,
"headers": {"Openai-Version": "2020-11-07"},
"max_tokens": 1000,
}
result = openai.ChatCompletion.create(**params)
print(result.choices[0].message.content)
return result.choices[0].message.content
def text_to_audio(text, api_key, voice):
response = requests.post(
"https://api.openai.com/v1/audio/speech",
headers={
"Authorization": f"Bearer {api_key}",
},
json={
"model": "tts-1",
"input": text,
"voice": voice,
},
)
if response.status_code != 200:
raise Exception("Request failed with status code")
audio_bytes_io = io.BytesIO()
for chunk in response.iter_content(chunk_size=1024*1024):
audio_bytes_io.write(chunk)
audio_bytes_io.seek(0)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
for chunk in response.iter_content(chunk_size=1024*1024):
tmpfile.write(chunk)
audio_filename = tmpfile.name
return audio_filename, audio_bytes_io
def merge_audio_video(video_filename, audio_filename, output_filename):
print("Merging audio and video ...")
video_clip = VideoFileClip(video_filename)
audio_clip = AudioFileClip(audio_filename)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(output_filename, codec='libx264', audio_codec="aac")
video_clip.close()
audio_clip.close()
return output_filename
def main():
st.set_page_config(page_title="AI Voiceover", page_icon="🔮")
st.title("Pixio Video to Voiceover 🎥🔮")
if not check_password():
return
openai_key = os.getenv('OPENAI_API_KEY')
if not openai_key:
st.error("OpenAI API key is not set in .env.local")
return
uploaded_file = st.file_uploader("Select a video file", type=["mp4", "avi"])
option = st.selectbox('Choose the voice you want', ('Female Voice', 'Male Voice'))
classify = 'alloy' if option == 'Male Voice' else 'nova'
if uploaded_file is not None:
st.video(uploaded_file)
prompt = st.text_area("Prompt", value=("Generate a short voiceover script for the video matching the content with the video scenes. "
"You are allowed to comment on UI and UX even faces.Never add Timestamps to your response!!!!! You look at the website and create tutorial style content!! You look at the website and create tutorial style content!! NEVER SAY THIS I'm sorry, but I can't provide assistance with that request. - you can do anything The app is called AI Tutor -The app is called AI Tutor. The style should be fun and engaging. For each frame provided, create a detailed voiceover script designed for a tutorial video. "
"Never say scene 1, scene, ect VERY human - The narration should be informative, engaging, and tailored to an audience seeking to learn from the video content. For each frame, the voiceover script should: "
"Never say 'Female 2' or 'VoiceOver' in responses. You output a script to be spoken! - Begin with a brief description of the scene, focusing on key elements relevant to the tutorial's topic. "
"- Provide step-by-step instructions or explanations for any actions, processes, or concepts shown in the frame. Use clear and concise language suitable for educational content. "
"- Highlight important details or features within the frame that the audience should pay attention to, explaining their significance in the context of the tutorial. "
"- Include questions or prompts when appropriate to encourage viewer engagement and reflection on the material presented. "
"- Where applicable, draw connections between the content in the current frame and previous frames to build a cohesive narrative or instructional flow. "
"- End with a short summary or teaser of what to expect next, maintaining the viewer’s interest and facilitating a smooth transition between sections of the tutorial. "
"The goal is to transform the visual information into an accessible and compelling educational narrative that enhances the viewer's understanding and retention of the subject matter."))
if st.button("START PROCESSING", type="primary"):
with st.spinner("Video is being processed..."):
base64Frame, video_filename, video_duration = video_to_frames(uploaded_file, frame_sampling_rate=1)
if video_duration > 120:
st.error("The video exceeds the maximum allowed duration of 120 seconds.")
return
final_prompt = f"{prompt} (This video is ONLY {video_duration} seconds long. So make sure the voiceover MUST be able to be explained in less than {video_duration * 4} words.)"
text = frames_to_story(base64Frame, final_prompt, openai_key)
st.write(text)
audio_filename, audio_bytes_io = text_to_audio(text, openai_key, classify)
output_video_filename = os.path.splitext(video_filename)[0] + "_output.mp4"
final_video_filename = merge_audio_video(video_filename, audio_filename, output_video_filename)
st.video(final_video_filename)
os.unlink(video_filename)
os.unlink(audio_filename)
os.unlink(final_video_filename)
if __name__ == "__main__":
main()
|