File size: 4,624 Bytes
11cc0d3
 
 
 
 
 
 
e6618d0
 
11cc0d3
 
 
fe0c99a
11cc0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569e03b
11cc0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6618d0
 
 
 
 
 
 
 
 
11cc0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
from fact_checker import FactChecker
from openai import OpenAI
import os
from dotenv import load_dotenv
import csv
from datetime import datetime
import pandas as pd
import random

load_dotenv()

def store_feedback_csv(claim, result, feedback, csv_file="data/feedback_log.csv"):
    now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    row = [
        now,
        claim,
        result.get("verdict", ""),
        result.get("confidence", ""),
        "|".join(result.get("evidence", [])),
        result.get("reasoning", ""),
        feedback
    ]
    header = ["datetime", "claim", "verdict", "confidence", "evidence", "reasoning", "feedback"]
    
    # Create file if it doesn't exist
    if not os.path.exists(csv_file):
        with open(csv_file, "w", newline='', encoding="utf-8") as f:
            writer = csv.writer(f)
            writer.writerow(header)
    
    # Append to existing file
    with open(csv_file, "a", newline='', encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow(row)

def initialize_services():
    return FactChecker(
        chroma_path="app/chroma_db",
        collection_name="pib_titles",
        groq_client=OpenAI(
            api_key=os.getenv("GROQ_API_KEY"),
            base_url="https://api.groq.com/openai/v1"
        )
    )

def main():
    st.title("πŸ” Fact Checker")
    checker = initialize_services()

    # Initialize session state variables
    if "feedback_submitted" not in st.session_state:
        st.session_state.feedback_submitted = False
    if "last_claim" not in st.session_state:
        st.session_state.last_claim = ""
    if "result" not in st.session_state:
        st.session_state.result = None

    claim = st.text_area("Enter a claim to verify:", height=150)
    try:
        df = pd.read_csv("data/pib_titles.csv")
        if not df.empty:
            sample_claims = df.sample(2)
            st.markdown("### πŸ§ͺ Example Claims from Dataset:")
            for idx, row in sample_claims.iterrows():
                st.markdown(f"- {row[0]}")
    except Exception as e:
        st.warning(f"Could not load example claims: {e}")
    confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, 0.05)

    if st.button("Verify Claim"):
        if not claim.strip():
            st.error("Please enter a claim to verify")
            return

        with st.spinner("Analyzing..."):
            # Store result in session state
            st.session_state.result = checker.verify_claim(claim, confidence_threshold)
            st.session_state.last_claim = claim
            st.session_state.feedback_submitted = False  # Reset feedback state for new claim

    # Display results from session state
    if st.session_state.result:
        result = st.session_state.result
        if "error" in result:
            st.error(f"Error: {result['error']}")
            if "raw_response" in result:
                with st.expander("Show raw LLM response"):
                    st.code(result["raw_response"])
        else:
            # Display verdict
            verdict_color = {
                "True": "green",
                "False": "red",
                "Unverifiable": "orange"
            }.get(result["verdict"], "gray")
            st.markdown(f"**Verdict:** :{verdict_color}[{result['verdict']}]")
            
            # Display confidence score
            st.metric("Confidence Score", f"{result.get('confidence', 0):.2f}")
            
            # Display evidence
            with st.expander("View Supporting Evidence"):
                for idx, evidence in enumerate(result.get("evidence", []), 1):
                    st.markdown(f"{idx}. {evidence}")
            
            # Display reasoning
            st.markdown("**Analysis:**")
            st.write(result.get("reasoning", "No reasoning provided"))

        # Feedback system
        feedback_key = f"feedback_radio_{st.session_state.last_claim}"
        if not st.session_state.feedback_submitted:
            feedback = st.radio(
                "Was this analysis helpful?",
                ["", "πŸ‘ Yes", "πŸ‘Ž No"],
                horizontal=True,
                key=feedback_key
            )
            
            if feedback:
                store_feedback_csv(st.session_state.last_claim, result, feedback)
                st.session_state.feedback_submitted = True
                st.rerun()  # Use st.rerun() instead of experimental_rerun()
        else:
            st.success("Thank you for your feedback! Your input helps improve the system.")


if __name__ == "__main__":
    main()