File size: 9,680 Bytes
11cc0d3
 
 
 
 
 
 
e6618d0
 
11cc0d3
 
 
fe0c99a
11cc0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569e03b
11cc0d3
 
 
 
 
 
 
 
8145877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11cc0d3
 
 
 
 
 
 
 
 
 
8145877
 
 
 
 
 
 
 
 
 
28e026d
8145877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ed798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8145877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11cc0d3
8145877
 
 
 
 
 
 
 
 
 
11cc0d3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import streamlit as st
from fact_checker import FactChecker
from openai import OpenAI
import os
from dotenv import load_dotenv
import csv
from datetime import datetime
import pandas as pd
import random

load_dotenv()

def store_feedback_csv(claim, result, feedback, csv_file="data/feedback_log.csv"):
    now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    row = [
        now,
        claim,
        result.get("verdict", ""),
        result.get("confidence", ""),
        "|".join(result.get("evidence", [])),
        result.get("reasoning", ""),
        feedback
    ]
    header = ["datetime", "claim", "verdict", "confidence", "evidence", "reasoning", "feedback"]
    
    # Create file if it doesn't exist
    if not os.path.exists(csv_file):
        with open(csv_file, "w", newline='', encoding="utf-8") as f:
            writer = csv.writer(f)
            writer.writerow(header)
    
    # Append to existing file
    with open(csv_file, "a", newline='', encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow(row)

def initialize_services():
    return FactChecker(
        chroma_path="app/chroma_db",
        collection_name="pib_titles",
        groq_client=OpenAI(
            api_key=os.getenv("GROQ_API_KEY"),
            base_url="https://api.groq.com/openai/v1"
        )
    )

def main():
    # Add sticky title using HTML and CSS
    st.markdown("""
<style>
.sticky-title {
    position: sticky;
    top: 0;
    z-index: 999;
    background: white;
    padding-top: 1rem;
    padding-bottom: 1rem;
    margin-bottom: 1rem;
    border-bottom: 2px solid #f0f0f0;
}
</style>
<div class="sticky-title">
    <h1>πŸ” Fact Checker</h1>
</div>
""", unsafe_allow_html=True)
    checker = initialize_services()

    # Initialize session state variables
    if "feedback_submitted" not in st.session_state:
        st.session_state.feedback_submitted = False
    if "last_claim" not in st.session_state:
        st.session_state.last_claim = ""
    if "result" not in st.session_state:
        st.session_state.result = None

    # --- Custom CSS for wider columns and better visuals ---
    st.markdown("""
<style>
/* Reduce max-width and remove side paddings/margins for full width */
.block-container {
    padding-top: 1rem;
    padding-bottom: 1rem;
    max-width: 100% !important;
    padding-left: 1rem !important;
    padding-right: 1rem !important;
     text-align: center;
}

/* Remove default margins on main content to reduce gaps */
main > div {
    margin-left: 0 !important;
    margin-right: 0 !important;
}

/* Stretch columns fully */
.css-1kyxreq, .css-1r6slb0 {
    width: 100% !important;
}

/* Style the DataFrame container for full width */
.stDataFrame {
    background: #f9f9f9 !important;
    border-radius: 12px;
    border: 1px solid #e0e0e0;
    padding: 0.5rem;
    width: 100% !important;
}

/* Style input area */
textarea, input[type="text"] {
    border: 2px solid #4CAF50 !important;
    border-radius: 6px !important;
    font-size: 1.1rem !important;
    background: #f4f8fc !important;
    width: 100% !important;
}

/* Style buttons */
button[kind="primary"] {
    background: #4CAF50 !important;
    color: white !important;
    border-radius: 6px !important;
    font-weight: bold !important;
}

/* Style scrollbars for DataFrame */
::-webkit-scrollbar {
    width: 8px;
    background: #f0f0f0;
}
::-webkit-scrollbar-thumb {
    background: #bdbdbd;
    border-radius: 4px;
}
</style>
""", unsafe_allow_html=True)


    # --- Layout ---
    spacer_col, left_col, right_col ,right_space= st.columns([1,9, 7,1], gap="large")

    with left_col:
        claim = st.text_area("Enter a claim to verify:", height=150)
        confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, 0.05)

        if st.button("Verify Claim"):
            if not claim.strip():
                st.error("Please enter a claim to verify")
                return

            with st.spinner("Analyzing..."):
                # Store result in session state
                st.session_state.result = checker.verify_claim(claim, confidence_threshold)
                st.session_state.last_claim = claim
                st.session_state.feedback_submitted = False  # Reset feedback state for new claim

            # Display results from session state
            if st.session_state.result:
                result = st.session_state.result

                # Show entity verification results
                st.subheader("Entity Verification Results")
                entities = result.get("entities", [])
                if entities:
                    for idx, entity_result in enumerate(entities, 1):
                        st.markdown(f"### Entity {idx}: {entity_result.get('entity', '')} ({entity_result.get('type', '')})")

                        if "error" in entity_result:
                            st.error(f"Error: {entity_result['error']}")
                            if "raw_response" in entity_result:
                                with st.expander("Show raw LLM response"):
                                    st.code(entity_result["raw_response"])
                            continue

                        verdict_color = {
                            "Valid": "green",
                            "Invalid": "red",
                            "Unverified": "orange"
                        }.get(entity_result.get("verdict", ""), "gray")
                        st.markdown(f"**Verdict:** :{verdict_color}[{entity_result.get('verdict', 'Unknown')}]")

                        # Confidence
                        st.metric("Confidence Score", f"{entity_result.get('confidence', 0):.2f}")

                        # Evidence
                        with st.expander("View Supporting Evidence"):
                            for i, evidence in enumerate(entity_result.get("evidence", []), 1):
                                st.markdown(f"{i}. {evidence}")

                        # Reasoning
                        st.markdown("**Analysis:**")
                        st.write(entity_result.get("reasoning", "No reasoning provided"))
                else:
                    st.write("No entities detected or verified.")

                # Show claim verification results
                st.subheader("Detected Claims and Verification Results")
                claims = result.get("claims", [])
                if not claims:
                    st.info("No check-worthy claims detected in the input.")
                else:
                    for idx, claim_result in enumerate(claims, 1):
                        st.markdown(f"### Claim {idx}")
                        st.markdown(f"> {claim_result.get('claim', '')}")

                        if "error" in claim_result:
                            st.error(f"Error: {claim_result['error']}")
                            if "raw_response" in claim_result:
                                with st.expander("Show raw LLM response"):
                                    st.code(claim_result["raw_response"])
                            continue

                        verdict_color = {
                            "True": "green",
                            "False": "red",
                            "Unverifiable": "orange"
                        }.get(claim_result.get("verdict", ""), "gray")
                        st.markdown(f"**Verdict:** :{verdict_color}[{claim_result.get('verdict', 'Unknown')}]")

                        # Confidence
                        st.metric("Confidence Score", f"{claim_result.get('confidence', 0):.2f}")

                        # Evidence
                        with st.expander("View Supporting Evidence"):
                            for i, evidence in enumerate(claim_result.get("evidence", []), 1):
                                st.markdown(f"{i}. {evidence}")

                        # Reasoning
                        st.markdown("**Analysis:**")
                        st.write(claim_result.get("reasoning", "No reasoning provided"))


            # Feedback system
            feedback_key = f"feedback_radio_{st.session_state.last_claim}"
            if not st.session_state.feedback_submitted:
                feedback = st.radio(
                    "Was this analysis helpful?",
                    ["", "πŸ‘ Yes", "πŸ‘Ž No"],
                    horizontal=True,
                    key=feedback_key
                )
                
                if feedback:
                    store_feedback_csv(st.session_state.last_claim, result, feedback)
                    st.session_state.feedback_submitted = True
                    st.rerun()  # Use st.rerun() instead of experimental_rerun()
            else:
                st.success("Thank you for your feedback! Your input helps improve the system.")

    with right_col:
        
        st.markdown("### πŸ“‹ All Claims")
        try:
            df = pd.read_csv("data/pib_titles.csv")["title"].to_frame()
            if not df.empty:
                st.markdown("""
<style>
.scrollable-cell {
    overflow-x: auto;
    white-space: nowrap;
    max-width: 100%;
    border: 1px solid #eee;
    padding: 6px 8px;
    font-family: monospace;
    background: #fafafa;
}
</style>
""", unsafe_allow_html=True)

            

            # Render each row as a scrollable div
            for idx, row in df.iterrows():
                st.markdown(
                    f'<div class="scrollable-cell">{row["title"]}</div>',
                    unsafe_allow_html=True
    )
        except Exception as e:
            st.warning(f"Unable to display full dataset: {e}")
    


if __name__ == "__main__":
    main()