File size: 9,680 Bytes
11cc0d3 e6618d0 11cc0d3 fe0c99a 11cc0d3 569e03b 11cc0d3 8145877 11cc0d3 8145877 28e026d 8145877 b2ed798 8145877 11cc0d3 8145877 11cc0d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import streamlit as st
from fact_checker import FactChecker
from openai import OpenAI
import os
from dotenv import load_dotenv
import csv
from datetime import datetime
import pandas as pd
import random
load_dotenv()
def store_feedback_csv(claim, result, feedback, csv_file="data/feedback_log.csv"):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
row = [
now,
claim,
result.get("verdict", ""),
result.get("confidence", ""),
"|".join(result.get("evidence", [])),
result.get("reasoning", ""),
feedback
]
header = ["datetime", "claim", "verdict", "confidence", "evidence", "reasoning", "feedback"]
# Create file if it doesn't exist
if not os.path.exists(csv_file):
with open(csv_file, "w", newline='', encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(header)
# Append to existing file
with open(csv_file, "a", newline='', encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(row)
def initialize_services():
return FactChecker(
chroma_path="app/chroma_db",
collection_name="pib_titles",
groq_client=OpenAI(
api_key=os.getenv("GROQ_API_KEY"),
base_url="https://api.groq.com/openai/v1"
)
)
def main():
# Add sticky title using HTML and CSS
st.markdown("""
<style>
.sticky-title {
position: sticky;
top: 0;
z-index: 999;
background: white;
padding-top: 1rem;
padding-bottom: 1rem;
margin-bottom: 1rem;
border-bottom: 2px solid #f0f0f0;
}
</style>
<div class="sticky-title">
<h1>π Fact Checker</h1>
</div>
""", unsafe_allow_html=True)
checker = initialize_services()
# Initialize session state variables
if "feedback_submitted" not in st.session_state:
st.session_state.feedback_submitted = False
if "last_claim" not in st.session_state:
st.session_state.last_claim = ""
if "result" not in st.session_state:
st.session_state.result = None
# --- Custom CSS for wider columns and better visuals ---
st.markdown("""
<style>
/* Reduce max-width and remove side paddings/margins for full width */
.block-container {
padding-top: 1rem;
padding-bottom: 1rem;
max-width: 100% !important;
padding-left: 1rem !important;
padding-right: 1rem !important;
text-align: center;
}
/* Remove default margins on main content to reduce gaps */
main > div {
margin-left: 0 !important;
margin-right: 0 !important;
}
/* Stretch columns fully */
.css-1kyxreq, .css-1r6slb0 {
width: 100% !important;
}
/* Style the DataFrame container for full width */
.stDataFrame {
background: #f9f9f9 !important;
border-radius: 12px;
border: 1px solid #e0e0e0;
padding: 0.5rem;
width: 100% !important;
}
/* Style input area */
textarea, input[type="text"] {
border: 2px solid #4CAF50 !important;
border-radius: 6px !important;
font-size: 1.1rem !important;
background: #f4f8fc !important;
width: 100% !important;
}
/* Style buttons */
button[kind="primary"] {
background: #4CAF50 !important;
color: white !important;
border-radius: 6px !important;
font-weight: bold !important;
}
/* Style scrollbars for DataFrame */
::-webkit-scrollbar {
width: 8px;
background: #f0f0f0;
}
::-webkit-scrollbar-thumb {
background: #bdbdbd;
border-radius: 4px;
}
</style>
""", unsafe_allow_html=True)
# --- Layout ---
spacer_col, left_col, right_col ,right_space= st.columns([1,9, 7,1], gap="large")
with left_col:
claim = st.text_area("Enter a claim to verify:", height=150)
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, 0.05)
if st.button("Verify Claim"):
if not claim.strip():
st.error("Please enter a claim to verify")
return
with st.spinner("Analyzing..."):
# Store result in session state
st.session_state.result = checker.verify_claim(claim, confidence_threshold)
st.session_state.last_claim = claim
st.session_state.feedback_submitted = False # Reset feedback state for new claim
# Display results from session state
if st.session_state.result:
result = st.session_state.result
# Show entity verification results
st.subheader("Entity Verification Results")
entities = result.get("entities", [])
if entities:
for idx, entity_result in enumerate(entities, 1):
st.markdown(f"### Entity {idx}: {entity_result.get('entity', '')} ({entity_result.get('type', '')})")
if "error" in entity_result:
st.error(f"Error: {entity_result['error']}")
if "raw_response" in entity_result:
with st.expander("Show raw LLM response"):
st.code(entity_result["raw_response"])
continue
verdict_color = {
"Valid": "green",
"Invalid": "red",
"Unverified": "orange"
}.get(entity_result.get("verdict", ""), "gray")
st.markdown(f"**Verdict:** :{verdict_color}[{entity_result.get('verdict', 'Unknown')}]")
# Confidence
st.metric("Confidence Score", f"{entity_result.get('confidence', 0):.2f}")
# Evidence
with st.expander("View Supporting Evidence"):
for i, evidence in enumerate(entity_result.get("evidence", []), 1):
st.markdown(f"{i}. {evidence}")
# Reasoning
st.markdown("**Analysis:**")
st.write(entity_result.get("reasoning", "No reasoning provided"))
else:
st.write("No entities detected or verified.")
# Show claim verification results
st.subheader("Detected Claims and Verification Results")
claims = result.get("claims", [])
if not claims:
st.info("No check-worthy claims detected in the input.")
else:
for idx, claim_result in enumerate(claims, 1):
st.markdown(f"### Claim {idx}")
st.markdown(f"> {claim_result.get('claim', '')}")
if "error" in claim_result:
st.error(f"Error: {claim_result['error']}")
if "raw_response" in claim_result:
with st.expander("Show raw LLM response"):
st.code(claim_result["raw_response"])
continue
verdict_color = {
"True": "green",
"False": "red",
"Unverifiable": "orange"
}.get(claim_result.get("verdict", ""), "gray")
st.markdown(f"**Verdict:** :{verdict_color}[{claim_result.get('verdict', 'Unknown')}]")
# Confidence
st.metric("Confidence Score", f"{claim_result.get('confidence', 0):.2f}")
# Evidence
with st.expander("View Supporting Evidence"):
for i, evidence in enumerate(claim_result.get("evidence", []), 1):
st.markdown(f"{i}. {evidence}")
# Reasoning
st.markdown("**Analysis:**")
st.write(claim_result.get("reasoning", "No reasoning provided"))
# Feedback system
feedback_key = f"feedback_radio_{st.session_state.last_claim}"
if not st.session_state.feedback_submitted:
feedback = st.radio(
"Was this analysis helpful?",
["", "π Yes", "π No"],
horizontal=True,
key=feedback_key
)
if feedback:
store_feedback_csv(st.session_state.last_claim, result, feedback)
st.session_state.feedback_submitted = True
st.rerun() # Use st.rerun() instead of experimental_rerun()
else:
st.success("Thank you for your feedback! Your input helps improve the system.")
with right_col:
st.markdown("### π All Claims")
try:
df = pd.read_csv("data/pib_titles.csv")["title"].to_frame()
if not df.empty:
st.markdown("""
<style>
.scrollable-cell {
overflow-x: auto;
white-space: nowrap;
max-width: 100%;
border: 1px solid #eee;
padding: 6px 8px;
font-family: monospace;
background: #fafafa;
}
</style>
""", unsafe_allow_html=True)
# Render each row as a scrollable div
for idx, row in df.iterrows():
st.markdown(
f'<div class="scrollable-cell">{row["title"]}</div>',
unsafe_allow_html=True
)
except Exception as e:
st.warning(f"Unable to display full dataset: {e}")
if __name__ == "__main__":
main()
|