Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
bdbb79e
0
Parent(s):
archive v1
Browse files- .gitattributes +35 -0
- README.md +10 -0
- _input/0.jpg +0 -0
- _input/1.jpg +0 -0
- _input/10.jpg +0 -0
- _input/11.jpg +0 -0
- _input/12.jpg +0 -0
- _input/13.jpg +0 -0
- _input/14.jpg +0 -0
- _input/15.jpg +0 -0
- _input/16.jpg +0 -0
- _input/17.jpg +0 -0
- _input/18.jpg +0 -0
- _input/19.jpg +0 -0
- _input/2.jpg +0 -0
- _input/3.jpg +0 -0
- _input/4.jpg +0 -0
- _input/5.jpg +0 -0
- _input/6.jpg +0 -0
- _input/7.jpg +0 -0
- _input/8.jpg +0 -0
- _input/9.jpg +0 -0
- app.py +144 -0
- llava.py +404 -0
- pre-requirements.txt +9 -0
- requirements.txt +4 -0
- train.py +831 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: MLLM-guided Image Editing (MGIE)
|
3 |
+
emoji: 👩🎨
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.37.0
|
8 |
+
app_file: app.py
|
9 |
+
license: other
|
10 |
+
---
|
_input/0.jpg
ADDED
![]() |
_input/1.jpg
ADDED
![]() |
_input/10.jpg
ADDED
![]() |
_input/11.jpg
ADDED
![]() |
_input/12.jpg
ADDED
![]() |
_input/13.jpg
ADDED
![]() |
_input/14.jpg
ADDED
![]() |
_input/15.jpg
ADDED
![]() |
_input/16.jpg
ADDED
![]() |
_input/17.jpg
ADDED
![]() |
_input/18.jpg
ADDED
![]() |
_input/19.jpg
ADDED
![]() |
_input/2.jpg
ADDED
![]() |
_input/3.jpg
ADDED
![]() |
_input/4.jpg
ADDED
![]() |
_input/5.jpg
ADDED
![]() |
_input/6.jpg
ADDED
![]() |
_input/7.jpg
ADDED
![]() |
_input/8.jpg
ADDED
![]() |
_input/9.jpg
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
# os.system('cp -r ./_ckpt/LLaVA-7B-v1 /data/LLaVA-7B-v1'), os.system('cp -r ./_ckpt/mgie_7b /data/mgie_7b')
|
4 |
+
os.system('ls /data'), os.system('df -h /data')
|
5 |
+
[os.system('mv llava.py /home/user/.pyenv/versions/3.10.13/lib/python3.10/site-packages/llava/model/llava.py'),
|
6 |
+
os.system('mv train.py /home/user/.pyenv/versions/3.10.13/lib/python3.10/site-packages/llava/train/train.py')]
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch as T
|
12 |
+
import transformers, diffusers
|
13 |
+
|
14 |
+
from llava.conversation import conv_templates
|
15 |
+
from llava.model import *
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
def crop_resize(f, sz=512):
|
20 |
+
w, h = f.size
|
21 |
+
if w>h:
|
22 |
+
p = (w-h)//2
|
23 |
+
f = f.crop([p, 0, p+h, h])
|
24 |
+
elif h>w:
|
25 |
+
p = (h-w)//2
|
26 |
+
f = f.crop([0, p, w, p+w])
|
27 |
+
f = f.resize([sz, sz])
|
28 |
+
return f
|
29 |
+
def remove_alter(s): # hack expressive instruction
|
30 |
+
if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip()
|
31 |
+
if '</s>' in s: s = s[:s.index('</s>')].strip()
|
32 |
+
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
|
33 |
+
if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
|
34 |
+
s = '.'.join([s.strip() for s in s.split('.')[:2]])
|
35 |
+
if s[-1]!='.': s += '.'
|
36 |
+
return s.strip()
|
37 |
+
|
38 |
+
DEFAULT_IMAGE_TOKEN = '<image>'
|
39 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
|
40 |
+
DEFAULT_IM_START_TOKEN = '<im_start>'
|
41 |
+
DEFAULT_IM_END_TOKEN = '<im_end>'
|
42 |
+
PATH_LLAVA = '/data/LLaVA-7B-v1'
|
43 |
+
|
44 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
45 |
+
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
|
46 |
+
image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16)
|
47 |
+
|
48 |
+
tokenizer.padding_side = 'left'
|
49 |
+
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
50 |
+
model.resize_token_embeddings(len(tokenizer))
|
51 |
+
ckpt = T.load('/data/mgie_7b/mllm.pt', map_location='cpu')
|
52 |
+
model.load_state_dict(ckpt, strict=False)
|
53 |
+
|
54 |
+
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
|
55 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
56 |
+
if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
57 |
+
|
58 |
+
vision_tower = model.get_model().vision_tower[0]
|
59 |
+
vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda()
|
60 |
+
model.get_model().vision_tower[0] = vision_tower
|
61 |
+
vision_config = vision_tower.config
|
62 |
+
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
63 |
+
vision_config.use_im_start_end = mm_use_im_start_end
|
64 |
+
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
65 |
+
image_token_len = (vision_config.image_size//vision_config.patch_size)**2
|
66 |
+
|
67 |
+
_ = model.eval()
|
68 |
+
EMB = ckpt['emb'].cuda()
|
69 |
+
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
|
70 |
+
|
71 |
+
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
|
72 |
+
pipe.set_progress_bar_config(disable=True)
|
73 |
+
pipe.unet.load_state_dict(T.load('/data/mgie_7b/unet.pt', map_location='cpu'))
|
74 |
+
print('--init MGIE--')
|
75 |
+
|
76 |
+
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
77 |
+
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
|
78 |
+
inp = img
|
79 |
+
|
80 |
+
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
|
81 |
+
txt = "what will this image be like if '%s'"%(txt)
|
82 |
+
txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN
|
83 |
+
conv = conv_templates['vicuna_v1_1'].copy()
|
84 |
+
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
|
85 |
+
txt = conv.get_prompt()
|
86 |
+
txt = tokenizer(txt)
|
87 |
+
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
|
88 |
+
|
89 |
+
with T.inference_mode():
|
90 |
+
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
|
91 |
+
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
|
92 |
+
return_dict_in_generate=True, output_hidden_states=True)
|
93 |
+
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
|
94 |
+
|
95 |
+
if 32003 in out: p = out.index(32003)-1
|
96 |
+
else: p = len(hid)-9
|
97 |
+
p = min(p, len(hid)-9)
|
98 |
+
hid = hid[p:p+8]
|
99 |
+
|
100 |
+
out = remove_alter(tokenizer.decode(out))
|
101 |
+
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
|
102 |
+
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
|
103 |
+
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
|
104 |
+
|
105 |
+
return res, out
|
106 |
+
|
107 |
+
def go_example(seed, cfg_txt, cfg_img):
|
108 |
+
txt = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion',
|
109 |
+
'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
|
110 |
+
'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
|
111 |
+
'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
|
112 |
+
'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
|
113 |
+
i = T.randint(len(txt), (1, )).item()
|
114 |
+
|
115 |
+
return './_input/%d.jpg'%(i), txt[i], seed, cfg_txt, cfg_img
|
116 |
+
|
117 |
+
go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5)
|
118 |
+
print('--init GO--')
|
119 |
+
|
120 |
+
with gr.Blocks() as app:
|
121 |
+
gr.Markdown(
|
122 |
+
"""
|
123 |
+
🔔 we will have a maintenance at 3 a.m. (PST)
|
124 |
+
# [ICLR\'24] Guiding Instruction-based Image Editing via Multimodal Large Language Models<br>
|
125 |
+
🔔 this demo is hosted by [Tsu-Jui Fu](https://github.com/tsujuifu/pytorch_mgie)<br>
|
126 |
+
🔔 a black image means that the output did not pass the [safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker)<br>
|
127 |
+
🔔 if the queue is full (*this app is too busy*), you can also try it [here](http://128.111.41.13:7122)<br>
|
128 |
+
🔔 if the building process takes too long, please try refreshing the page
|
129 |
+
"""
|
130 |
+
)
|
131 |
+
with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
|
132 |
+
gr.Image(height=384, width=384, label='Goal Image', interactive=False)]
|
133 |
+
with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True),
|
134 |
+
gr.Textbox(label='Expressive Instruction', interactive=False)]
|
135 |
+
with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
|
136 |
+
gr.Number(value=7.5, label='Text CFG', interactive=True),
|
137 |
+
gr.Number(value=1.5, label='Image CFG', interactive=True)]
|
138 |
+
with gr.Row(): btn_sub, btn_exp = [gr.Button('Submit'),
|
139 |
+
gr.Button('Example')]
|
140 |
+
|
141 |
+
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
|
142 |
+
btn_exp.click(fn=go_example, inputs=[seed, cfg_txt, cfg_img], outputs=[inp, txt, seed, cfg_txt, cfg_img])
|
143 |
+
|
144 |
+
app.queue(concurrency_count=1, max_size=75), app.launch()
|
llava.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/model/llava.py
|
3 |
+
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
|
11 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
12 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM, \
|
13 |
+
CLIPVisionModel, CLIPImageProcessor
|
14 |
+
|
15 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
16 |
+
|
17 |
+
import os, diffusers
|
18 |
+
|
19 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
20 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
21 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
22 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
23 |
+
|
24 |
+
|
25 |
+
class LlavaConfig(LlamaConfig):
|
26 |
+
model_type = "llava"
|
27 |
+
|
28 |
+
|
29 |
+
class LlavaLlamaModel(LlamaModel):
|
30 |
+
config_class = LlavaConfig
|
31 |
+
|
32 |
+
def __init__(self, config: LlamaConfig):
|
33 |
+
super(LlavaLlamaModel, self).__init__(config)
|
34 |
+
|
35 |
+
if hasattr(config, "mm_vision_tower"):
|
36 |
+
# HACK: for FSDP
|
37 |
+
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
|
38 |
+
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
|
39 |
+
|
40 |
+
if hasattr(config, "use_mm_proj"):
|
41 |
+
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
42 |
+
|
43 |
+
def get_vision_tower(self):
|
44 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
45 |
+
if type(vision_tower) is list:
|
46 |
+
vision_tower = vision_tower[0]
|
47 |
+
return vision_tower
|
48 |
+
|
49 |
+
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
|
50 |
+
pretrain_mm_mlp_adapter=None, fsdp=None):
|
51 |
+
self.config.mm_vision_tower = vision_tower
|
52 |
+
|
53 |
+
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
54 |
+
|
55 |
+
if not hasattr(self, 'vision_tower'):
|
56 |
+
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
57 |
+
else:
|
58 |
+
vision_tower = self.vision_tower[0]
|
59 |
+
vision_tower.requires_grad_(False)
|
60 |
+
|
61 |
+
if fsdp is not None and len(fsdp) > 0:
|
62 |
+
self.vision_tower = [vision_tower]
|
63 |
+
else:
|
64 |
+
self.vision_tower = vision_tower
|
65 |
+
|
66 |
+
vision_config = vision_tower.config
|
67 |
+
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
|
68 |
+
|
69 |
+
self.config.use_mm_proj = True
|
70 |
+
self.config.mm_hidden_size = vision_config.hidden_size
|
71 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
72 |
+
|
73 |
+
if not hasattr(self, 'mm_projector'):
|
74 |
+
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
|
75 |
+
|
76 |
+
if pretrain_mm_mlp_adapter is not None:
|
77 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
78 |
+
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
79 |
+
|
80 |
+
return dict(
|
81 |
+
image_processor=image_processor,
|
82 |
+
image_token_len=num_patches,
|
83 |
+
vision_config=vision_config
|
84 |
+
)
|
85 |
+
|
86 |
+
def forward(
|
87 |
+
self,
|
88 |
+
input_ids: torch.LongTensor = None,
|
89 |
+
attention_mask: Optional[torch.Tensor] = None,
|
90 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
91 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
92 |
+
use_cache: Optional[bool] = None,
|
93 |
+
output_attentions: Optional[bool] = None,
|
94 |
+
output_hidden_states: Optional[bool] = None,
|
95 |
+
images: Optional[torch.FloatTensor] = None,
|
96 |
+
return_dict: Optional[bool] = None,
|
97 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
98 |
+
|
99 |
+
# HACK: replace back original embeddings for LLaVA pretraining
|
100 |
+
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
101 |
+
# if orig_embeds_params is not None:
|
102 |
+
# orig_embeds_params = orig_embeds_params[0]
|
103 |
+
# with torch.no_grad():
|
104 |
+
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
|
105 |
+
|
106 |
+
if inputs_embeds is None:
|
107 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
108 |
+
|
109 |
+
vision_tower = self.get_vision_tower()
|
110 |
+
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
111 |
+
# TODO: this is a modified multimodal LLM -- Haotian Liu
|
112 |
+
with torch.no_grad():
|
113 |
+
if type(images) is list:
|
114 |
+
# variable length images
|
115 |
+
image_features = []
|
116 |
+
for image in images:
|
117 |
+
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
|
118 |
+
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
119 |
+
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
120 |
+
image_feature = select_hidden_state[:, 1:]
|
121 |
+
image_features.append(image_feature)
|
122 |
+
else:
|
123 |
+
image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True)
|
124 |
+
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
125 |
+
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
|
126 |
+
image_features = select_hidden_state[:, 1:].to(images.dtype)
|
127 |
+
if type(images) is list:
|
128 |
+
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
|
129 |
+
else:
|
130 |
+
image_features = self.mm_projector(image_features)
|
131 |
+
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
132 |
+
dummy_image_features = self.mm_projector(dummy_image_features)
|
133 |
+
|
134 |
+
new_input_embeds = []
|
135 |
+
cur_image_idx = 0
|
136 |
+
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
|
137 |
+
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
|
138 |
+
# multimodal LLM, but the current sample is not multimodal
|
139 |
+
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
140 |
+
new_input_embeds.append(cur_input_embeds)
|
141 |
+
cur_image_idx += 1
|
142 |
+
continue
|
143 |
+
if vision_tower.config.use_im_start_end:
|
144 |
+
cur_image_features = image_features[cur_image_idx]
|
145 |
+
num_patches = cur_image_features.shape[0]
|
146 |
+
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
|
147 |
+
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
148 |
+
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
|
149 |
+
for image_start_token_pos in image_start_tokens:
|
150 |
+
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
|
151 |
+
num_patches = cur_image_features.shape[0]
|
152 |
+
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
|
153 |
+
raise ValueError("The image end token should follow the image start token.")
|
154 |
+
if orig_embeds_params is not None:
|
155 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
156 |
+
else:
|
157 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
158 |
+
cur_image_idx += 1
|
159 |
+
new_input_embeds.append(cur_new_input_embeds)
|
160 |
+
else:
|
161 |
+
cur_image_features = image_features[cur_image_idx]
|
162 |
+
num_patches = cur_image_features.shape[0]
|
163 |
+
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
|
164 |
+
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
|
165 |
+
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
|
166 |
+
mask_index_start = masked_indices[0]
|
167 |
+
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
|
168 |
+
raise ValueError("The image patch tokens should be consecutive.")
|
169 |
+
if orig_embeds_params is not None:
|
170 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
|
171 |
+
else:
|
172 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
|
173 |
+
new_input_embeds.append(cur_new_input_embeds)
|
174 |
+
cur_image_idx += 1
|
175 |
+
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
176 |
+
|
177 |
+
return super(LlavaLlamaModel, self).forward(
|
178 |
+
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
179 |
+
inputs_embeds=inputs_embeds, use_cache=use_cache,
|
180 |
+
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
181 |
+
return_dict=return_dict
|
182 |
+
)
|
183 |
+
|
184 |
+
class EditMapper(nn.Module):
|
185 |
+
def __init__(self):
|
186 |
+
super().__init__()
|
187 |
+
|
188 |
+
self.llm2hid = nn.Linear(4096, 512)
|
189 |
+
self.query = nn.Parameter(torch.randn(1, 77, 512))
|
190 |
+
self.mapper = nn.Transformer(batch_first=True, norm_first=True,
|
191 |
+
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
|
192 |
+
dim_feedforward=2048, dropout=0.0)
|
193 |
+
self.hid2feat = nn.Linear(512, 768)
|
194 |
+
|
195 |
+
def forward(self, llm, emb):
|
196 |
+
hid = self.llm2hid(llm+emb)
|
197 |
+
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
|
198 |
+
feat = self.hid2feat(hid)
|
199 |
+
|
200 |
+
return feat
|
201 |
+
|
202 |
+
class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
203 |
+
config_class = LlavaConfig
|
204 |
+
|
205 |
+
def __init__(self, config):
|
206 |
+
super(LlamaForCausalLM, self).__init__(config)
|
207 |
+
self.model = LlavaLlamaModel(config)
|
208 |
+
|
209 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
210 |
+
|
211 |
+
self.edit_head = EditMapper()
|
212 |
+
|
213 |
+
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
|
214 |
+
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
|
215 |
+
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
|
216 |
+
self.vae.requires_grad_(False)
|
217 |
+
self.unet.register_to_config(in_channels=8)
|
218 |
+
with torch.no_grad():
|
219 |
+
conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
|
220 |
+
conv.weight.zero_()
|
221 |
+
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
|
222 |
+
self.unet.conv_in = conv'''
|
223 |
+
|
224 |
+
# Initialize weights and apply final processing
|
225 |
+
self.post_init()
|
226 |
+
|
227 |
+
def get_model(self):
|
228 |
+
return self.model
|
229 |
+
|
230 |
+
def get_vision_tower(self):
|
231 |
+
return self.get_model().get_vision_tower()
|
232 |
+
|
233 |
+
def get_vision_tower(self):
|
234 |
+
model = self.get_model()
|
235 |
+
vision_tower = model.vision_tower
|
236 |
+
if type(vision_tower) is list:
|
237 |
+
vision_tower = vision_tower[0]
|
238 |
+
return vision_tower
|
239 |
+
|
240 |
+
def forward(
|
241 |
+
self,
|
242 |
+
input_ids: torch.LongTensor = None,
|
243 |
+
attention_mask: Optional[torch.Tensor] = None,
|
244 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
245 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
246 |
+
labels: Optional[torch.LongTensor] = None,
|
247 |
+
use_cache: Optional[bool] = None,
|
248 |
+
output_attentions: Optional[bool] = None,
|
249 |
+
output_hidden_states: Optional[bool] = None,
|
250 |
+
images: Optional[torch.FloatTensor] = None,
|
251 |
+
return_dict: Optional[bool] = None,
|
252 |
+
p2p_inp=None, p2p_ans=None
|
253 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
254 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
255 |
+
output_hidden_states = (
|
256 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
257 |
+
)
|
258 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
259 |
+
|
260 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
261 |
+
outputs = self.model(
|
262 |
+
input_ids=input_ids,
|
263 |
+
attention_mask=attention_mask,
|
264 |
+
past_key_values=past_key_values,
|
265 |
+
inputs_embeds=inputs_embeds,
|
266 |
+
use_cache=use_cache,
|
267 |
+
output_attentions=output_attentions,
|
268 |
+
output_hidden_states=output_hidden_states,
|
269 |
+
return_dict=return_dict,
|
270 |
+
images=images
|
271 |
+
)
|
272 |
+
|
273 |
+
hidden_states = outputs[0]
|
274 |
+
logits = self.lm_head(hidden_states)
|
275 |
+
|
276 |
+
loss = None
|
277 |
+
if labels is not None:
|
278 |
+
# Shift so that tokens < n predict n
|
279 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
280 |
+
shift_labels = labels[..., 1:].contiguous()
|
281 |
+
# Flatten the tokens
|
282 |
+
loss_fct = CrossEntropyLoss()
|
283 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
284 |
+
shift_labels = shift_labels.view(-1)
|
285 |
+
# Enable model/pipeline parallelism
|
286 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
287 |
+
loss = loss_fct(shift_logits, shift_labels)
|
288 |
+
|
289 |
+
if labels is not None:
|
290 |
+
llm = []
|
291 |
+
for i in range(labels.shape[0]):
|
292 |
+
try: p = labels[i].data.cpu().tolist().index(32003)-1
|
293 |
+
except: p = len(labels[i])-9
|
294 |
+
p = min(len(hidden_states[i])-9, p)
|
295 |
+
llm.append(hidden_states[i][p:p+8].unsqueeze(0))
|
296 |
+
llm = torch.cat(llm, dim=0)
|
297 |
+
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
298 |
+
|
299 |
+
B, DROP = labels.shape[0], 0.05
|
300 |
+
|
301 |
+
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
|
302 |
+
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
303 |
+
|
304 |
+
with torch.no_grad():
|
305 |
+
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
|
306 |
+
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
|
307 |
+
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
|
308 |
+
|
309 |
+
noise = torch.randn_like(lat_ans)
|
310 |
+
ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long()
|
311 |
+
lat_noise = self.scheduler.add_noise(lat_ans, noise, ts)
|
312 |
+
|
313 |
+
prob = torch.rand(B, device=lat_ans.device)
|
314 |
+
mask = (prob<(DROP*2)).reshape(B, 1, 1)
|
315 |
+
hid_edit = torch.where(mask, hid_null, hid_edit)
|
316 |
+
mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1)
|
317 |
+
lat_inp *= mask
|
318 |
+
|
319 |
+
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
|
320 |
+
|
321 |
+
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
|
322 |
+
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
|
323 |
+
loss = loss_ce+loss_edit*0.5
|
324 |
+
|
325 |
+
if not return_dict:
|
326 |
+
output = (logits,) + outputs[1:]
|
327 |
+
return (loss,) + output if loss is not None else output
|
328 |
+
|
329 |
+
return CausalLMOutputWithPast(
|
330 |
+
loss=loss,
|
331 |
+
logits=logits,
|
332 |
+
past_key_values=outputs.past_key_values,
|
333 |
+
hidden_states=outputs.hidden_states,
|
334 |
+
attentions=outputs.attentions,
|
335 |
+
)
|
336 |
+
|
337 |
+
def prepare_inputs_for_generation(
|
338 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
339 |
+
):
|
340 |
+
if past_key_values:
|
341 |
+
input_ids = input_ids[:, -1:]
|
342 |
+
|
343 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
344 |
+
if inputs_embeds is not None and past_key_values is None:
|
345 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
346 |
+
else:
|
347 |
+
model_inputs = {"input_ids": input_ids}
|
348 |
+
|
349 |
+
model_inputs.update(
|
350 |
+
{
|
351 |
+
"past_key_values": past_key_values,
|
352 |
+
"use_cache": kwargs.get("use_cache"),
|
353 |
+
"attention_mask": attention_mask,
|
354 |
+
"images": kwargs.get("images", None),
|
355 |
+
}
|
356 |
+
)
|
357 |
+
return model_inputs
|
358 |
+
|
359 |
+
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
|
360 |
+
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
|
361 |
+
vision_config = self.get_vision_tower().config
|
362 |
+
vision_config.use_im_start_end = mm_use_im_start_end
|
363 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
364 |
+
self.resize_token_embeddings(len(tokenizer))
|
365 |
+
|
366 |
+
if mm_use_im_start_end:
|
367 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
368 |
+
self.resize_token_embeddings(len(tokenizer))
|
369 |
+
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
370 |
+
|
371 |
+
if num_new_tokens > 0:
|
372 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
373 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
374 |
+
|
375 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
376 |
+
dim=0, keepdim=True)
|
377 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
378 |
+
dim=0, keepdim=True)
|
379 |
+
|
380 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
381 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
382 |
+
|
383 |
+
if tune_mm_mlp_adapter:
|
384 |
+
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
|
385 |
+
for p in self.get_input_embeddings().parameters():
|
386 |
+
p.requires_grad = True
|
387 |
+
for p in self.get_output_embeddings().parameters():
|
388 |
+
p.requires_grad = False
|
389 |
+
|
390 |
+
if pretrain_mm_mlp_adapter:
|
391 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
392 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
393 |
+
assert num_new_tokens == 2
|
394 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
395 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
396 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
397 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
400 |
+
|
401 |
+
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
402 |
+
|
403 |
+
AutoConfig.register("llava", LlavaConfig)
|
404 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
pre-requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentencepiece
|
2 |
+
transformers
|
3 |
+
diffusers
|
4 |
+
tokenizers
|
5 |
+
datasets
|
6 |
+
accelerate
|
7 |
+
evaluate
|
8 |
+
gradio
|
9 |
+
git+https://github.com/haotian-liu/LLaVA@7ace501
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-i https://download.pytorch.org/whl/cu113
|
2 |
+
torch==1.12.0
|
3 |
+
torchvision==0.13.0
|
4 |
+
torchaudio==0.12.0
|
train.py
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/train/train.py
|
3 |
+
|
4 |
+
import os
|
5 |
+
import copy
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
import pathlib
|
10 |
+
from typing import Dict, Optional, Sequence, List
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
import transformers
|
15 |
+
from torch.utils.data import Dataset
|
16 |
+
from llava.train.llava_trainer import LLaVATrainer
|
17 |
+
|
18 |
+
from llava import conversation as conversation_lib
|
19 |
+
from llava.model import *
|
20 |
+
|
21 |
+
from PIL import Image
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
# TODO: import and use code from ../data/dataset.py
|
25 |
+
|
26 |
+
IGNORE_INDEX = -100
|
27 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
28 |
+
DEFAULT_EOS_TOKEN = "</s>"
|
29 |
+
DEFAULT_BOS_TOKEN = "<s>"
|
30 |
+
DEFAULT_UNK_TOKEN = "<unk>"
|
31 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
32 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
33 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
34 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
35 |
+
|
36 |
+
import io, base64, pickle, random
|
37 |
+
from tqdm import tqdm
|
38 |
+
import numpy as np
|
39 |
+
|
40 |
+
def b2f(b): return Image.open(io.BytesIO(base64.b64decode(b))).convert('RGB')
|
41 |
+
def resize(f):
|
42 |
+
w, h = f.size
|
43 |
+
if w>h:
|
44 |
+
p = (w-h)//2
|
45 |
+
f = f.crop([p, 0, p+h, h])
|
46 |
+
elif h>w:
|
47 |
+
p = (h-w)//2
|
48 |
+
f = f.crop([0, p, w, p+w])
|
49 |
+
f = f.resize([512, 512])
|
50 |
+
return f
|
51 |
+
def img2npy(f): return (2.0*np.array(f)/255.0-1.0).transpose((2, 0, 1)).astype(np.float32)
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class ModelArguments:
|
55 |
+
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
56 |
+
version: Optional[str] = field(default="v0")
|
57 |
+
freeze_backbone: bool = field(default=False)
|
58 |
+
tune_mm_mlp_adapter: bool = field(default=False)
|
59 |
+
vision_tower: Optional[str] = field(default=None)
|
60 |
+
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer
|
61 |
+
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
|
62 |
+
mm_use_im_start_end: bool = field(default=False)
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class DataArguments:
|
67 |
+
data_path: str = field(default=None,
|
68 |
+
metadata={"help": "Path to the training data."})
|
69 |
+
lazy_preprocess: bool = False
|
70 |
+
is_multimodal: bool = False
|
71 |
+
sep_image_conv_front: bool = False
|
72 |
+
image_token_len: int = 0
|
73 |
+
image_folder: Optional[str] = field(default=None)
|
74 |
+
image_aspect_ratio: str = 'square'
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class TrainingArguments(transformers.TrainingArguments):
|
79 |
+
cache_dir: Optional[str] = field(default=None)
|
80 |
+
optim: str = field(default="adamw_torch")
|
81 |
+
remove_unused_columns: bool = field(default=False)
|
82 |
+
freeze_mm_mlp_adapter: bool = field(default=False)
|
83 |
+
force_fsdp: bool = field(default=False)
|
84 |
+
model_max_length: int = field(
|
85 |
+
default=512,
|
86 |
+
metadata={
|
87 |
+
"help":
|
88 |
+
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
89 |
+
},
|
90 |
+
)
|
91 |
+
double_quant: bool = field(
|
92 |
+
default=True,
|
93 |
+
metadata={"help": "Compress the quantization statistics through double quantization."}
|
94 |
+
)
|
95 |
+
quant_type: str = field(
|
96 |
+
default="nf4",
|
97 |
+
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
|
98 |
+
)
|
99 |
+
bits: int = field(
|
100 |
+
default=16,
|
101 |
+
metadata={"help": "How many bits to use."}
|
102 |
+
)
|
103 |
+
lora_enable: bool = False
|
104 |
+
lora_r: int = 64
|
105 |
+
lora_alpha: int = 16
|
106 |
+
lora_dropout: float = 0.05
|
107 |
+
lora_weight_path: str = ""
|
108 |
+
lora_bias: str = "none"
|
109 |
+
|
110 |
+
|
111 |
+
def maybe_zero_3(param, ignore_status=False, name=None):
|
112 |
+
from deepspeed import zero
|
113 |
+
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
114 |
+
if hasattr(param, "ds_id"):
|
115 |
+
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
116 |
+
if not ignore_status:
|
117 |
+
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
118 |
+
with zero.GatheredParameters([param]):
|
119 |
+
param = param.data.detach().cpu().clone()
|
120 |
+
else:
|
121 |
+
param = param.detach().cpu().clone()
|
122 |
+
return param
|
123 |
+
|
124 |
+
|
125 |
+
# Borrowed from peft.utils.get_peft_model_state_dict
|
126 |
+
def get_peft_state_maybe_zero_3(named_params, bias):
|
127 |
+
if bias == "none":
|
128 |
+
to_return = {k: t for k, t in named_params if "lora_" in k}
|
129 |
+
elif bias == "all":
|
130 |
+
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
131 |
+
elif bias == "lora_only":
|
132 |
+
to_return = {}
|
133 |
+
maybe_lora_bias = {}
|
134 |
+
lora_bias_names = set()
|
135 |
+
for k, t in named_params:
|
136 |
+
if "lora_" in k:
|
137 |
+
to_return[k] = t
|
138 |
+
bias_name = k.split("lora_")[0] + "bias"
|
139 |
+
lora_bias_names.add(bias_name)
|
140 |
+
elif "bias" in k:
|
141 |
+
maybe_lora_bias[k] = t
|
142 |
+
for k, t in maybe_lora_bias:
|
143 |
+
if bias_name in lora_bias_names:
|
144 |
+
to_return[bias_name] = t
|
145 |
+
else:
|
146 |
+
raise NotImplementedError
|
147 |
+
to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()}
|
148 |
+
return to_return
|
149 |
+
|
150 |
+
|
151 |
+
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
152 |
+
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
153 |
+
if require_grad_only:
|
154 |
+
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
155 |
+
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
156 |
+
return to_return
|
157 |
+
|
158 |
+
|
159 |
+
def find_all_linear_names(model):
|
160 |
+
cls = torch.nn.Linear
|
161 |
+
lora_module_names = set()
|
162 |
+
for name, module in model.named_modules():
|
163 |
+
if isinstance(module, cls):
|
164 |
+
names = name.split('.')
|
165 |
+
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
166 |
+
|
167 |
+
|
168 |
+
if 'lm_head' in lora_module_names: # needed for 16-bit
|
169 |
+
lora_module_names.remove('lm_head')
|
170 |
+
return list(lora_module_names)
|
171 |
+
|
172 |
+
|
173 |
+
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
|
174 |
+
output_dir: str):
|
175 |
+
"""Collects the state dict and dump to disk."""
|
176 |
+
if trainer.deepspeed:
|
177 |
+
torch.cuda.synchronize()
|
178 |
+
trainer.save_model(output_dir)
|
179 |
+
return
|
180 |
+
|
181 |
+
state_dict = trainer.model.state_dict()
|
182 |
+
if trainer.args.should_save:
|
183 |
+
cpu_state_dict = {
|
184 |
+
key: value.cpu()
|
185 |
+
for key, value in state_dict.items()
|
186 |
+
}
|
187 |
+
del state_dict
|
188 |
+
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
189 |
+
|
190 |
+
|
191 |
+
def smart_tokenizer_and_embedding_resize(
|
192 |
+
special_tokens_dict: Dict,
|
193 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
194 |
+
model: transformers.PreTrainedModel,
|
195 |
+
):
|
196 |
+
"""Resize tokenizer and embedding.
|
197 |
+
|
198 |
+
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
199 |
+
"""
|
200 |
+
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
201 |
+
model.resize_token_embeddings(len(tokenizer))
|
202 |
+
|
203 |
+
if num_new_tokens > 0:
|
204 |
+
input_embeddings = model.get_input_embeddings().weight.data
|
205 |
+
output_embeddings = model.get_output_embeddings().weight.data
|
206 |
+
|
207 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
208 |
+
dim=0, keepdim=True)
|
209 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
210 |
+
dim=0, keepdim=True)
|
211 |
+
|
212 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
213 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
214 |
+
|
215 |
+
|
216 |
+
def _tokenize_fn(strings: Sequence[str],
|
217 |
+
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
218 |
+
"""Tokenize a list of strings."""
|
219 |
+
tokenized_list = [
|
220 |
+
tokenizer(
|
221 |
+
text,
|
222 |
+
return_tensors="pt",
|
223 |
+
padding="longest",
|
224 |
+
max_length=tokenizer.model_max_length,
|
225 |
+
truncation=True,
|
226 |
+
) for text in strings
|
227 |
+
]
|
228 |
+
input_ids = labels = [
|
229 |
+
tokenized.input_ids[0] for tokenized in tokenized_list
|
230 |
+
]
|
231 |
+
input_ids_lens = labels_lens = [
|
232 |
+
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
233 |
+
for tokenized in tokenized_list
|
234 |
+
]
|
235 |
+
return dict(
|
236 |
+
input_ids=input_ids,
|
237 |
+
labels=labels,
|
238 |
+
input_ids_lens=input_ids_lens,
|
239 |
+
labels_lens=labels_lens,
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
def _mask_targets(target, tokenized_lens, speakers):
|
244 |
+
# cur_idx = 0
|
245 |
+
cur_idx = tokenized_lens[0]
|
246 |
+
tokenized_lens = tokenized_lens[1:]
|
247 |
+
target[:cur_idx] = IGNORE_INDEX
|
248 |
+
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
249 |
+
if speaker == "human":
|
250 |
+
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
251 |
+
cur_idx += tokenized_len
|
252 |
+
|
253 |
+
|
254 |
+
def _add_speaker_and_signal(header, source, get_conversation=True):
|
255 |
+
"""Add speaker and start/end signal on each round."""
|
256 |
+
BEGIN_SIGNAL = "### "
|
257 |
+
END_SIGNAL = "\n"
|
258 |
+
conversation = header
|
259 |
+
for sentence in source:
|
260 |
+
from_str = sentence["from"]
|
261 |
+
if from_str.lower() == "human":
|
262 |
+
from_str = conversation_lib.default_conversation.roles[0]
|
263 |
+
elif from_str.lower() == "gpt":
|
264 |
+
from_str = conversation_lib.default_conversation.roles[1]
|
265 |
+
else:
|
266 |
+
from_str = 'unknown'
|
267 |
+
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
268 |
+
sentence["value"] + END_SIGNAL)
|
269 |
+
if get_conversation:
|
270 |
+
conversation += sentence["value"]
|
271 |
+
conversation += BEGIN_SIGNAL
|
272 |
+
return conversation
|
273 |
+
|
274 |
+
|
275 |
+
def preprocess_multimodal(
|
276 |
+
sources: Sequence[str],
|
277 |
+
multimodal_cfg: dict,
|
278 |
+
cur_token_len: int,
|
279 |
+
) -> Dict:
|
280 |
+
is_multimodal = multimodal_cfg['is_multimodal']
|
281 |
+
# image_token_len = multimodal_cfg['image_token_len']
|
282 |
+
image_token_len = cur_token_len
|
283 |
+
if not is_multimodal:
|
284 |
+
return sources
|
285 |
+
|
286 |
+
for source in sources:
|
287 |
+
if multimodal_cfg['sep_image_conv_front']:
|
288 |
+
assert DEFAULT_IMAGE_TOKEN in source[0]['value']
|
289 |
+
source[0]['value'] = source[0]['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
|
290 |
+
source[0]['value'] = DEFAULT_IMAGE_TOKEN + conversation_lib.default_conversation.sep + conversation_lib.default_conversation.roles[0] + ": " + source[0]['value']
|
291 |
+
for sentence in source:
|
292 |
+
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
293 |
+
if multimodal_cfg['use_im_start_end']:
|
294 |
+
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
295 |
+
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
296 |
+
|
297 |
+
return sources
|
298 |
+
|
299 |
+
|
300 |
+
def preprocess_v1(
|
301 |
+
sources,
|
302 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
303 |
+
) -> Dict:
|
304 |
+
conv = conversation_lib.default_conversation.copy()
|
305 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
306 |
+
|
307 |
+
# Apply prompt templates
|
308 |
+
conversations = []
|
309 |
+
for i, source in enumerate(sources):
|
310 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
311 |
+
# Skip the first one if it is not from human
|
312 |
+
source = source[1:]
|
313 |
+
|
314 |
+
conv.messages = []
|
315 |
+
for j, sentence in enumerate(source):
|
316 |
+
role = roles[sentence["from"]]
|
317 |
+
assert role == conv.roles[j % 2], f"{i}"
|
318 |
+
conv.append_message(role, sentence["value"])
|
319 |
+
conversations.append(conv.get_prompt())
|
320 |
+
|
321 |
+
# Tokenize conversations
|
322 |
+
input_ids = tokenizer(
|
323 |
+
conversations,
|
324 |
+
return_tensors="pt",
|
325 |
+
padding="longest",
|
326 |
+
max_length=tokenizer.model_max_length,
|
327 |
+
truncation=True,
|
328 |
+
).input_ids
|
329 |
+
targets = input_ids.clone()
|
330 |
+
|
331 |
+
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
|
332 |
+
|
333 |
+
# Mask targets
|
334 |
+
sep = conv.sep + conv.roles[1] + ": "
|
335 |
+
for conversation, target in zip(conversations, targets):
|
336 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
337 |
+
|
338 |
+
rounds = conversation.split(conv.sep2)
|
339 |
+
cur_len = 1
|
340 |
+
target[:cur_len] = IGNORE_INDEX
|
341 |
+
for i, rou in enumerate(rounds):
|
342 |
+
if rou == "":
|
343 |
+
break
|
344 |
+
|
345 |
+
parts = rou.split(sep)
|
346 |
+
if len(parts) != 2:
|
347 |
+
break
|
348 |
+
parts[0] += sep
|
349 |
+
round_len = len(tokenizer(rou).input_ids)
|
350 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
351 |
+
|
352 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
353 |
+
|
354 |
+
cur_len += round_len
|
355 |
+
target[cur_len:] = IGNORE_INDEX
|
356 |
+
|
357 |
+
if cur_len < tokenizer.model_max_length:
|
358 |
+
if cur_len != total_len:
|
359 |
+
target[:] = IGNORE_INDEX
|
360 |
+
print(
|
361 |
+
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
362 |
+
f" (ignored)"
|
363 |
+
)
|
364 |
+
|
365 |
+
return dict(
|
366 |
+
input_ids=input_ids,
|
367 |
+
labels=targets,
|
368 |
+
)
|
369 |
+
|
370 |
+
def preprocess_mpt(
|
371 |
+
sources,
|
372 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
373 |
+
) -> Dict:
|
374 |
+
conv = conversation_lib.default_conversation.copy()
|
375 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
376 |
+
|
377 |
+
# Apply prompt templates
|
378 |
+
conversations = []
|
379 |
+
for i, source in enumerate(sources):
|
380 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
381 |
+
# Skip the first one if it is not from human
|
382 |
+
source = source[1:]
|
383 |
+
|
384 |
+
conv.messages = []
|
385 |
+
for j, sentence in enumerate(source):
|
386 |
+
role = roles[sentence["from"]]
|
387 |
+
assert role == conv.roles[j % 2], f"{i}"
|
388 |
+
conv.append_message(role, sentence["value"])
|
389 |
+
conversations.append(conv.get_prompt())
|
390 |
+
|
391 |
+
# Tokenize conversations
|
392 |
+
input_ids = tokenizer(
|
393 |
+
conversations,
|
394 |
+
return_tensors="pt",
|
395 |
+
padding="longest",
|
396 |
+
max_length=tokenizer.model_max_length,
|
397 |
+
truncation=True,
|
398 |
+
).input_ids
|
399 |
+
targets = input_ids.clone()
|
400 |
+
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT
|
401 |
+
|
402 |
+
# Mask targets
|
403 |
+
sep = conv.sep + conv.roles[1]
|
404 |
+
for conversation, target in zip(conversations, targets):
|
405 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
406 |
+
|
407 |
+
rounds = conversation.split(conv.sep)
|
408 |
+
re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt
|
409 |
+
for conv_idx in range(3, len(rounds), 2):
|
410 |
+
re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt
|
411 |
+
cur_len = 0
|
412 |
+
target[:cur_len] = IGNORE_INDEX
|
413 |
+
for i, rou in enumerate(re_rounds):
|
414 |
+
if rou == "":
|
415 |
+
break
|
416 |
+
|
417 |
+
parts = rou.split(sep)
|
418 |
+
if len(parts) != 2:
|
419 |
+
break
|
420 |
+
parts[0] += sep
|
421 |
+
round_len = len(tokenizer(rou).input_ids) + len(tokenizer(conv.sep).input_ids)
|
422 |
+
instruction_len = len(tokenizer(parts[0]).input_ids)
|
423 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
424 |
+
|
425 |
+
cur_len += round_len
|
426 |
+
target[cur_len:] = IGNORE_INDEX
|
427 |
+
|
428 |
+
if cur_len < tokenizer.model_max_length:
|
429 |
+
if cur_len != total_len:
|
430 |
+
target[:] = IGNORE_INDEX
|
431 |
+
print(
|
432 |
+
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
433 |
+
f" (ignored)"
|
434 |
+
)
|
435 |
+
|
436 |
+
return dict(
|
437 |
+
input_ids=input_ids,
|
438 |
+
labels=targets,
|
439 |
+
)
|
440 |
+
|
441 |
+
|
442 |
+
def preprocess(
|
443 |
+
sources: Sequence[str],
|
444 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
445 |
+
) -> Dict:
|
446 |
+
"""
|
447 |
+
Given a list of sources, each is a conversation list. This transform:
|
448 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
449 |
+
2. Concatenate conversations together;
|
450 |
+
3. Tokenize the concatenated conversation;
|
451 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
452 |
+
"""
|
453 |
+
if conversation_lib.default_conversation.version == "v1":
|
454 |
+
return preprocess_v1(sources, tokenizer)
|
455 |
+
if conversation_lib.default_conversation.version == "mpt":
|
456 |
+
return preprocess_mpt(sources, tokenizer)
|
457 |
+
# add end signal and concatenate together
|
458 |
+
conversations = []
|
459 |
+
for source in sources:
|
460 |
+
header = f"{conversation_lib.default_conversation.system}\n\n"
|
461 |
+
conversation = _add_speaker_and_signal(header, source)
|
462 |
+
conversations.append(conversation)
|
463 |
+
# tokenize conversations
|
464 |
+
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
465 |
+
input_ids = conversations_tokenized["input_ids"]
|
466 |
+
targets = copy.deepcopy(input_ids)
|
467 |
+
for target, source in zip(targets, sources):
|
468 |
+
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source],
|
469 |
+
tokenizer)["input_ids_lens"]
|
470 |
+
speakers = [sentence["from"] for sentence in source]
|
471 |
+
_mask_targets(target, tokenized_lens, speakers)
|
472 |
+
|
473 |
+
return dict(input_ids=input_ids, labels=targets)
|
474 |
+
|
475 |
+
|
476 |
+
class SupervisedDataset(Dataset):
|
477 |
+
"""Dataset for supervised fine-tuning."""
|
478 |
+
|
479 |
+
def __init__(self, data_path: str,
|
480 |
+
tokenizer: transformers.PreTrainedTokenizer):
|
481 |
+
super(SupervisedDataset, self).__init__()
|
482 |
+
logging.warning("Loading data...")
|
483 |
+
list_data_dict = json.load(open(data_path, "r"))
|
484 |
+
|
485 |
+
logging.warning("Formatting inputs...")
|
486 |
+
sources = [example["conversations"] for example in list_data_dict]
|
487 |
+
data_dict = preprocess(sources, tokenizer)
|
488 |
+
|
489 |
+
self.input_ids = data_dict["input_ids"]
|
490 |
+
self.labels = data_dict["labels"]
|
491 |
+
|
492 |
+
def __len__(self):
|
493 |
+
return len(self.input_ids)
|
494 |
+
|
495 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
496 |
+
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
|
497 |
+
|
498 |
+
|
499 |
+
class LazySupervisedDataset(Dataset):
|
500 |
+
|
501 |
+
def __init__(self, data_path: str,
|
502 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
503 |
+
multimodal_cfg: dict):
|
504 |
+
super(LazySupervisedDataset, self).__init__()
|
505 |
+
|
506 |
+
self.tokenizer, self.multimodal_cfg = tokenizer, multimodal_cfg
|
507 |
+
|
508 |
+
self.pkl, self.prompt = pickle.load(open('./_data/ipr2pr.pkl', 'rb'))['task'], json.load(open('./_data/ipr2pr_expressive.json', 'r'))
|
509 |
+
random.shuffle(self.pkl)
|
510 |
+
print('--pkl: %d--'%(len(self.pkl)))
|
511 |
+
|
512 |
+
def __len__(self):
|
513 |
+
return len(self.pkl)
|
514 |
+
|
515 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
516 |
+
item = self.pkl[i][0]
|
517 |
+
|
518 |
+
tsv = open('./_data/ipr2pr.tsv', 'r')
|
519 |
+
tsv.seek(item['lineidx'])
|
520 |
+
b = tsv.readline().strip().split('\t')
|
521 |
+
image = resize(b2f(b[0]))
|
522 |
+
|
523 |
+
processor = self.multimodal_cfg['image_processor']
|
524 |
+
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
525 |
+
|
526 |
+
cur_token_len = (image.shape[1]//14)*(image.shape[2]//14)
|
527 |
+
query = "what will this image be like if '%s'\n%s"%(item['instruction'], DEFAULT_IMAGE_TOKEN)
|
528 |
+
ans = '%s [IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]'%(self.prompt[item['input']]['expressive'])
|
529 |
+
sources = preprocess_multimodal(copy.deepcopy([[{'from': 'human', 'value': query}, {'from': 'gpt', 'value': ans}]]),
|
530 |
+
self.multimodal_cfg, cur_token_len)
|
531 |
+
|
532 |
+
data_dict = preprocess(sources, self.tokenizer)
|
533 |
+
if isinstance(i, int): data_dict = dict(input_ids=data_dict['input_ids'][0],
|
534 |
+
labels=data_dict['labels'][0])
|
535 |
+
data_dict['image'] = image
|
536 |
+
|
537 |
+
p2p_inp, p2p_ans = img2npy(resize(b2f(b[0])).resize([256, 256])), img2npy(resize(b2f(b[1])).resize([256, 256]))
|
538 |
+
data_dict['p2p_inp'], data_dict['p2p_ans'] = p2p_inp, p2p_ans
|
539 |
+
|
540 |
+
return data_dict
|
541 |
+
|
542 |
+
|
543 |
+
@dataclass
|
544 |
+
class DataCollatorForSupervisedDataset(object):
|
545 |
+
"""Collate examples for supervised fine-tuning."""
|
546 |
+
|
547 |
+
tokenizer: transformers.PreTrainedTokenizer
|
548 |
+
|
549 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
550 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
551 |
+
for key in ("input_ids", "labels"))
|
552 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
553 |
+
input_ids,
|
554 |
+
batch_first=True,
|
555 |
+
padding_value=self.tokenizer.pad_token_id)
|
556 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
557 |
+
batch_first=True,
|
558 |
+
padding_value=IGNORE_INDEX)
|
559 |
+
batch = dict(
|
560 |
+
input_ids=input_ids,
|
561 |
+
labels=labels,
|
562 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
563 |
+
)
|
564 |
+
|
565 |
+
if 'image' in instances[0]:
|
566 |
+
images = [instance['image'] for instance in instances]
|
567 |
+
if all(x is not None and x.shape == images[0].shape for x in images):
|
568 |
+
batch['images'] = torch.stack(images)
|
569 |
+
else:
|
570 |
+
batch['images'] = images
|
571 |
+
|
572 |
+
batch['p2p_inp'], batch['p2p_ans'] = [torch.cat([torch.from_numpy(d['p2p_inp']).unsqueeze(dim=0) for d in instances], dim=0),
|
573 |
+
torch.cat([torch.from_numpy(d['p2p_ans']).unsqueeze(dim=0) for d in instances], dim=0)]
|
574 |
+
|
575 |
+
return batch
|
576 |
+
|
577 |
+
|
578 |
+
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
|
579 |
+
data_args) -> Dict:
|
580 |
+
"""Make dataset and collator for supervised fine-tuning."""
|
581 |
+
dataset_cls = (LazySupervisedDataset
|
582 |
+
if data_args.lazy_preprocess else SupervisedDataset)
|
583 |
+
train_dataset = dataset_cls(tokenizer=tokenizer,
|
584 |
+
data_path=data_args.data_path,
|
585 |
+
multimodal_cfg=dict(
|
586 |
+
is_multimodal=data_args.is_multimodal,
|
587 |
+
sep_image_conv_front=data_args.sep_image_conv_front,
|
588 |
+
image_token_len=data_args.image_token_len,
|
589 |
+
image_folder=data_args.image_folder,
|
590 |
+
image_aspect_ratio=data_args.image_aspect_ratio,
|
591 |
+
use_im_start_end=getattr(data_args, 'mm_use_im_start_end', False),
|
592 |
+
image_processor=getattr(data_args, 'image_processor', None)))
|
593 |
+
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
594 |
+
return dict(train_dataset=train_dataset,
|
595 |
+
eval_dataset=None,
|
596 |
+
data_collator=data_collator)
|
597 |
+
|
598 |
+
|
599 |
+
def train():
|
600 |
+
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
601 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
602 |
+
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
603 |
+
|
604 |
+
bnb_model_from_pretrained_args = {}
|
605 |
+
if training_args.bits in [4, 8]:
|
606 |
+
from transformers import BitsAndBytesConfig
|
607 |
+
from peft import prepare_model_for_int8_training
|
608 |
+
bnb_model_from_pretrained_args.update(dict(
|
609 |
+
device_map={"": training_args.device},
|
610 |
+
load_in_4bit=training_args.bits == 4,
|
611 |
+
load_in_8bit=training_args.bits == 8,
|
612 |
+
quantization_config=BitsAndBytesConfig(
|
613 |
+
load_in_4bit=training_args.bits == 4,
|
614 |
+
load_in_8bit=training_args.bits == 8,
|
615 |
+
llm_int8_threshold=6.0,
|
616 |
+
llm_int8_has_fp16_weight=False,
|
617 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
618 |
+
bnb_4bit_use_double_quant=training_args.double_quant,
|
619 |
+
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
|
620 |
+
)
|
621 |
+
))
|
622 |
+
|
623 |
+
if model_args.vision_tower is not None:
|
624 |
+
if 'mpt' in model_args.model_name_or_path:
|
625 |
+
model = LlavaMPTForCausalLM.from_pretrained(
|
626 |
+
model_args.model_name_or_path,
|
627 |
+
cache_dir=training_args.cache_dir,
|
628 |
+
**bnb_model_from_pretrained_args
|
629 |
+
)
|
630 |
+
else:
|
631 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
632 |
+
model_args.model_name_or_path,
|
633 |
+
cache_dir=training_args.cache_dir,
|
634 |
+
**bnb_model_from_pretrained_args
|
635 |
+
)
|
636 |
+
else:
|
637 |
+
model = transformers.LlamaForCausalLM.from_pretrained(
|
638 |
+
model_args.model_name_or_path,
|
639 |
+
cache_dir=training_args.cache_dir,
|
640 |
+
**bnb_model_from_pretrained_args
|
641 |
+
)
|
642 |
+
model.config.use_cache = False
|
643 |
+
|
644 |
+
if model_args.freeze_backbone:
|
645 |
+
model.model.requires_grad_(False)
|
646 |
+
|
647 |
+
if training_args.bits in [4, 8]:
|
648 |
+
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
649 |
+
model = prepare_model_for_int8_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
|
650 |
+
|
651 |
+
if training_args.gradient_checkpointing and model_args.vision_tower is None:
|
652 |
+
if hasattr(model, "enable_input_require_grads"):
|
653 |
+
model.enable_input_require_grads()
|
654 |
+
else:
|
655 |
+
def make_inputs_require_grad(module, input, output):
|
656 |
+
output.requires_grad_(True)
|
657 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
658 |
+
|
659 |
+
if training_args.lora_enable:
|
660 |
+
from peft import LoraConfig, get_peft_model
|
661 |
+
lora_config = LoraConfig(
|
662 |
+
r=training_args.lora_r,
|
663 |
+
lora_alpha=training_args.lora_alpha,
|
664 |
+
target_modules=find_all_linear_names(model),
|
665 |
+
lora_dropout=training_args.lora_dropout,
|
666 |
+
bias=training_args.lora_bias,
|
667 |
+
task_type="CAUSAL_LM",
|
668 |
+
)
|
669 |
+
if training_args.bits == 16:
|
670 |
+
if training_args.bf16:
|
671 |
+
model.to(torch.bfloat16)
|
672 |
+
if training_args.fp16:
|
673 |
+
model.to(torch.float16)
|
674 |
+
logging.warning("Adding LoRA adapters...")
|
675 |
+
model = get_peft_model(model, lora_config)
|
676 |
+
|
677 |
+
if 'mpt' in model_args.model_name_or_path:
|
678 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
679 |
+
model_args.model_name_or_path,
|
680 |
+
cache_dir=training_args.cache_dir,
|
681 |
+
model_max_length=training_args.model_max_length,
|
682 |
+
padding_side="right"
|
683 |
+
)
|
684 |
+
else:
|
685 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
686 |
+
model_args.model_name_or_path,
|
687 |
+
cache_dir=training_args.cache_dir,
|
688 |
+
model_max_length=training_args.model_max_length,
|
689 |
+
padding_side="right",
|
690 |
+
use_fast=False,
|
691 |
+
)
|
692 |
+
|
693 |
+
if model_args.version == "v0":
|
694 |
+
if tokenizer.pad_token is None:
|
695 |
+
smart_tokenizer_and_embedding_resize(
|
696 |
+
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
697 |
+
tokenizer=tokenizer,
|
698 |
+
model=model,
|
699 |
+
)
|
700 |
+
if "llama" in model_args.model_name_or_path:
|
701 |
+
tokenizer.add_special_tokens({
|
702 |
+
"eos_token": DEFAULT_EOS_TOKEN,
|
703 |
+
"bos_token": DEFAULT_BOS_TOKEN,
|
704 |
+
"unk_token": DEFAULT_UNK_TOKEN,
|
705 |
+
})
|
706 |
+
else:
|
707 |
+
tokenizer.pad_token = tokenizer.unk_token
|
708 |
+
if "mpt" in model_args.model_name_or_path:
|
709 |
+
conversation_lib.default_conversation = conversation_lib.conv_templates["mpt"]
|
710 |
+
else:
|
711 |
+
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1_1"]
|
712 |
+
|
713 |
+
if model_args.vision_tower is not None:
|
714 |
+
model_vision_dict = model.get_model().initialize_vision_modules(
|
715 |
+
vision_tower=model_args.vision_tower,
|
716 |
+
mm_vision_select_layer=model_args.mm_vision_select_layer,
|
717 |
+
pretrain_mm_mlp_adapter=model_args.pretrain_mm_mlp_adapter,
|
718 |
+
fsdp=training_args.fsdp
|
719 |
+
)
|
720 |
+
model.get_vision_tower().to(dtype=torch.float16, device=training_args.device)
|
721 |
+
vision_config = model_vision_dict['vision_config']
|
722 |
+
|
723 |
+
data_args.image_token_len = model_vision_dict['image_token_len']
|
724 |
+
data_args.image_processor = model_vision_dict['image_processor']
|
725 |
+
data_args.is_multimodal = True
|
726 |
+
|
727 |
+
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
|
728 |
+
if model_args.tune_mm_mlp_adapter:
|
729 |
+
model.requires_grad_(False)
|
730 |
+
for p in model.get_model().mm_projector.parameters():
|
731 |
+
p.requires_grad = True
|
732 |
+
|
733 |
+
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
|
734 |
+
if training_args.freeze_mm_mlp_adapter:
|
735 |
+
for p in model.get_model().mm_projector.parameters():
|
736 |
+
p.requires_grad = False
|
737 |
+
|
738 |
+
if training_args.bits in [4, 8]:
|
739 |
+
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
|
740 |
+
|
741 |
+
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
|
742 |
+
vision_config.use_im_start_end = training_args.use_im_start_end = model_args.mm_use_im_start_end
|
743 |
+
model.config.sep_image_conv_front = data_args.sep_image_conv_front
|
744 |
+
model.initialize_vision_tokenizer(mm_use_im_start_end=model_args.mm_use_im_start_end, tokenizer=tokenizer, device=training_args.device,
|
745 |
+
tune_mm_mlp_adapter=model_args.tune_mm_mlp_adapter, pretrain_mm_mlp_adapter=model_args.pretrain_mm_mlp_adapter)
|
746 |
+
|
747 |
+
params_no_grad = [n for n, p in model.named_parameters() if not p.requires_grad]
|
748 |
+
if len(params_no_grad) > 0:
|
749 |
+
if training_args.fsdp is not None and len(training_args.fsdp) > 0:
|
750 |
+
if len(params_no_grad) < 10:
|
751 |
+
print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}'. format(len(params_no_grad), params_no_grad))
|
752 |
+
else:
|
753 |
+
print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}...(omitted)'. format(len(params_no_grad), ', '.join(params_no_grad[:10])))
|
754 |
+
print("[WARNING] Attempting to use FSDP with partially frozen paramters, this is experimental.")
|
755 |
+
print("[WARNING] As of 4/30/23, this feature requires PyTorch-nightly build. See here for details: https://github.com/haotian-liu/LLaVA#experimental-use-fsdp-to-save-memory-in-pretraining")
|
756 |
+
|
757 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
|
758 |
+
def patch_FSDP_use_orig_params(func):
|
759 |
+
def wrap_func(*args, **kwargs):
|
760 |
+
use_orig_params = kwargs.pop('use_orig_params', True)
|
761 |
+
return func(*args, **kwargs, use_orig_params=use_orig_params)
|
762 |
+
return wrap_func
|
763 |
+
|
764 |
+
FSDP.__init__ = patch_FSDP_use_orig_params(FSDP.__init__)
|
765 |
+
|
766 |
+
if training_args.bits in [4, 8]:
|
767 |
+
from peft.tuners.lora import LoraLayer
|
768 |
+
for name, module in model.named_modules():
|
769 |
+
if isinstance(module, LoraLayer):
|
770 |
+
if training_args.bf16:
|
771 |
+
module = module.to(torch.bfloat16)
|
772 |
+
if 'norm' in name:
|
773 |
+
module = module.to(torch.float32)
|
774 |
+
if 'lm_head' in name or 'embed_tokens' in name:
|
775 |
+
if hasattr(module, 'weight'):
|
776 |
+
if training_args.bf16 and module.weight.dtype == torch.float32:
|
777 |
+
module = module.to(torch.bfloat16)
|
778 |
+
|
779 |
+
# start for MGIE
|
780 |
+
os.makedirs('_log', exist_ok=True)
|
781 |
+
|
782 |
+
pt = {}
|
783 |
+
for i in tqdm(range(2)): pt.update(torch.load('./_ckpt/LLaVA-7B-v1/pytorch_model-0000%d-of-00002.bin'%(i+1), map_location='cpu'))
|
784 |
+
miss, unexp = model.load_state_dict(pt, strict=False)
|
785 |
+
print('miss:', miss), print('unexp:', unexp)
|
786 |
+
|
787 |
+
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
788 |
+
model.resize_token_embeddings(len(tokenizer))
|
789 |
+
print(tokenizer), json.dump(tokenizer.get_vocab(), open('_log/vocabs.json', 'w'), indent=2)
|
790 |
+
|
791 |
+
for n, p in model.named_parameters():
|
792 |
+
if 'embed_tokens' in n or 'lm_head' in n or 'edit_head' in n or 'unet' in n: p.requires_grad = True
|
793 |
+
else: p.requires_grad = False
|
794 |
+
with open('_log/parameters.txt', 'w') as F:
|
795 |
+
for n, p in model.named_parameters(): F.write('%s %s %s\n'%(n, str(p.shape), str(p.requires_grad)))
|
796 |
+
|
797 |
+
with open('_log/args_train.txt', 'w') as F:
|
798 |
+
for key in vars(training_args): F.write('%s: %s\n'%(str(key), str(vars(training_args)[key])))
|
799 |
+
# end for MGIE
|
800 |
+
|
801 |
+
data_module = make_supervised_data_module(tokenizer=tokenizer,
|
802 |
+
data_args=data_args)
|
803 |
+
trainer = LLaVATrainer(model=model,
|
804 |
+
tokenizer=tokenizer,
|
805 |
+
args=training_args,
|
806 |
+
**data_module)
|
807 |
+
|
808 |
+
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
809 |
+
trainer.train(resume_from_checkpoint=True)
|
810 |
+
else:
|
811 |
+
trainer.train()
|
812 |
+
trainer.save_state()
|
813 |
+
|
814 |
+
if training_args.lora_enable:
|
815 |
+
state_dict = get_peft_state_maybe_zero_3(
|
816 |
+
model.named_parameters(), training_args.lora_bias
|
817 |
+
)
|
818 |
+
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
|
819 |
+
model.named_parameters()
|
820 |
+
)
|
821 |
+
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
822 |
+
model.config.save_pretrained(training_args.output_dir)
|
823 |
+
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
824 |
+
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
825 |
+
else:
|
826 |
+
safe_save_model_for_hf_trainer(trainer=trainer,
|
827 |
+
output_dir=training_args.output_dir)
|
828 |
+
|
829 |
+
|
830 |
+
if __name__ == "__main__":
|
831 |
+
train()
|