File size: 5,458 Bytes
e676d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from PIL import Image
import numpy as np
import base64
import io
from io import BytesIO
from PIL import Image, ImageFile
from pdf2image import convert_from_path
import tempfile
from multiprocessing import Pool
import os
from loguru import logger
import uuid

from typing import Any, List, Tuple, Type, Literal, Optional, Union, Dict

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))

def pil_image_to_base64(image: Image) -> str:
    """
    Convert a PIL Image object to its base64 representation.

    Args:
        image (Image): The PIL Image object to be converted.

    Returns:
        str: The base64 representation of the image.
    """

    # Create a bytes buffer
    buffer = io.BytesIO()

    # Save the image to the buffer
    image.save(buffer, format="PNG")

    # Get the bytes from the buffer
    img_bytes = buffer.getvalue()

    # Convert the bytes to base64
    img_base64 = base64.b64encode(img_bytes).decode("utf-8")

    return img_base64

def scale_image(image: Image.Image, new_height: int = 1024) -> Image.Image:
    """
    Scale an image to a new height while maintaining the aspect ratio.
    """
    width, height = image.size
    aspect_ratio = width / height
    new_width = int(new_height * aspect_ratio)

    scaled_image = image.resize((new_width, new_height))

    return scaled_image

def unflatten_array(flat_list, vector_size=128):
    return np.array(flat_list).reshape(-1, vector_size)

def get_image_embedding(image_list: list[Image], openai_client, model: str, flatten: bool = False) -> list:
    """
    Get the embedding of an image.

    Args:
        image (Image): The image to be embedded.

    Returns:
        list[list[float]] if flatten, 
        else: list[list[list[float]]] with shape = (number of images (m), number of vector for each text (n), vector dim = 128)
    """
    if not isinstance(image_list, list):
        image_list = [image_list]

    input_base64_list = [f"data:image/png;base64,{pil_image_to_base64(image)}" for image in image_list]
    # Get the embedding of the image
    embedding = openai_client.embeddings.create(
        input=input_base64_list,
        model=model,
        extra_body={
            "modality": "image",
            "encoding_format":"float" if not flatten else "base64",
        },
    )

    result = []
    for embed in embedding.data:
        result.append(embed.embedding) # embed.embedding is a list[float] in case of flatten, else: list[list[float]]
    return result

def get_text_embedding(texts: list[str], openai_client, model: str, flatten: bool = False) -> list:
    """
    Get the embedding of a text.

    Args:
        text (str): The text to be embedded.

    Returns:
        list[list[float]] if flatten, 
        else: list[list[list[float]]] with shape = (number of texts (m), number of vector for each text (n), vector dim = 128)
    """
    if not isinstance(texts, list):
        texts = [texts]

    # Get the embedding of the text
    embedding = openai_client.embeddings.create(
        input=texts,
        model=model,
        extra_body={
            "encoding_format":"float" if not flatten else "base64",
        },
    )

    result = []
    for embed in embedding.data:
        result.append(embed.embedding) # embed.embedding is a list[float] in case of flatten, else: list[list[float]]
    return result

def load_images(image_paths):
    """
    Load images from a list of paths and return a list of PIL image objects.

    Args:
        image_paths (list): List of image paths.

    Returns:
        list: List of PIL image objects.
    """
    images = []
    for path in image_paths:
        try:
            img = Image.open(path)
            images.append(img)
        except Exception as e:
            logger.error(f"Error loading image at path {path}: {str(e)}")
    return images
    

def process_pdf(pdf_path: str, output_folder: str, thread_count=1):
    result_image_paths = []

    with tempfile.TemporaryDirectory() as temp_dir:
        images = convert_from_path(pdf_path, dpi=200, output_folder=temp_dir, thread_count=thread_count)

    # for page_num, image in enumerate(images):
    #     image_filename = f"{str(uuid.uuid4())}.png"
    #     image_path = os.path.join(output_folder, image_filename)
    #     image.save(image_path, "PNG")
    #     result_image_paths.append(image_path)
    
    # del images
    # return result_image_paths
    return images


def pdf_folder_to_images(pdf_folder: str, output_folder: str, process_count: int = 2):
    try:
        if process_count is None:
            process_count = os.cpu_count()

        pdf_files = [os.path.join(pdf_folder, f) for f in os.listdir(pdf_folder)
                     if f.lower().endswith('.pdf')]
        
        # Create a list of tuples containing (pdf_file, output_folder)
        args = [(pdf_file, output_folder) for pdf_file in pdf_files]
        
        with Pool(process_count) as pool:
            all_images = pool.starmap(process_pdf, args)
        
        result = [img for sublist in all_images for img in sublist]

        logger.debug(f"Number of pdfs processed: {len(all_images)} - Number of images: {len(result)}")
        return result
    except Exception as e:
        logger.exception(f"Error during processing pdf: {e}")