File size: 5,143 Bytes
7ef50cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import sys
import time
import torchaudio
import torch
from torch import nn
from scipy import signal
from scipy.io import wavfile
import numpy as np
import multiprocessing
from pydub import AudioSegment
multiprocessing.set_start_method("spawn", force=True)
now_directory = os.getcwd()
sys.path.append(now_directory)
from rvc.lib.utils import load_audio
from rvc.train.slicer import Slicer
# Constants
OVERLAP = 0.3
MAX_AMPLITUDE = 0.9
ALPHA = 0.75
HIGH_PASS_CUTOFF = 48
SAMPLE_RATE_16K = 16000
class PreProcess:
def __init__(self, sr: int, exp_dir: str, per: float):
self.slicer = Slicer(
sr=sr,
threshold=-42,
min_length=1500,
min_interval=400,
hop_size=15,
max_sil_kept=500,
)
self.sr = sr
self.b_high, self.a_high = signal.butter(
N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr
)
self.per = per
self.exp_dir = exp_dir
self.device = "cpu"
self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(self.gt_wavs_dir, exist_ok=True)
os.makedirs(self.wavs16k_dir, exist_ok=True)
def _normalize_audio(self, audio: torch.Tensor):
tmp_max = torch.abs(audio).max()
if tmp_max > 2.5:
return None
return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio
def _write_audio(self, audio: torch.Tensor, filename: str, sr: int):
audio = audio.cpu().numpy()
wavfile.write(filename, sr, audio.astype(np.float32))
def process_audio_segment(self, audio_segment: torch.Tensor, idx0: int, idx1: int):
normalized_audio = self._normalize_audio(audio_segment)
if normalized_audio is None:
print(f"{idx0}-{idx1}-filtered")
return
gt_wav_path = os.path.join(self.gt_wavs_dir, f"{idx0}_{idx1}.wav")
self._write_audio(normalized_audio, gt_wav_path, self.sr)
resampler = torchaudio.transforms.Resample(
orig_freq=self.sr, new_freq=SAMPLE_RATE_16K
).to(self.device)
audio_16k = resampler(normalized_audio.float())
wav_16k_path = os.path.join(self.wavs16k_dir, f"{idx0}_{idx1}.wav")
self._write_audio(audio_16k, wav_16k_path, SAMPLE_RATE_16K)
def process_audio(self, path: str, idx0: int):
try:
audio = load_audio(path, self.sr)
audio = torch.tensor(
signal.lfilter(self.b_high, self.a_high, audio), device=self.device
).float()
idx1 = 0
for audio_segment in self.slicer.slice(audio.cpu().numpy()):
audio_segment = torch.tensor(audio_segment, device=self.device).float()
i = 0
while True:
start = int(self.sr * (self.per - OVERLAP) * i)
i += 1
if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
tmp_audio = audio_segment[
start : start + int(self.per * self.sr)
]
self.process_audio_segment(tmp_audio, idx0, idx1)
idx1 += 1
else:
tmp_audio = audio_segment[start:]
self.process_audio_segment(tmp_audio, idx0, idx1)
idx1 += 1
break
except Exception as error:
print(f"An error occurred on {path} path: {error}")
def process_audio_file(self, file_path_idx):
file_path, idx0 = file_path_idx
ext = os.path.splitext(file_path)[1].lower()
if ext not in [".wav"]:
audio = AudioSegment.from_file(file_path)
file_path = os.path.join("/tmp", f"{idx0}.wav")
audio.export(file_path, format="wav")
self.process_audio(file_path, idx0)
def preprocess_training_set(
input_root: str,
sr: int,
num_processes: int,
exp_dir: str,
per: float,
):
start_time = time.time()
pp = PreProcess(sr, exp_dir, per)
print(f"Starting preprocess with {num_processes} processes...")
files = [
(os.path.join(input_root, f), idx)
for idx, f in enumerate(os.listdir(input_root))
if f.lower().endswith((".wav", ".mp3", ".flac", ".ogg"))
]
ctx = multiprocessing.get_context("spawn")
with ctx.Pool(processes=num_processes) as pool:
pool.map(pp.process_audio_file, files)
elapsed_time = time.time() - start_time
print(f"Preprocess completed in {elapsed_time:.2f} seconds.")
if __name__ == "__main__":
experiment_directory = str(sys.argv[1])
input_root = str(sys.argv[2])
sample_rate = int(sys.argv[3])
percentage = float(sys.argv[4])
num_processes = (
int(sys.argv[5]) if len(sys.argv) > 5 else multiprocessing.cpu_count()
)
preprocess_training_set(
input_root,
sample_rate,
num_processes,
experiment_directory,
percentage,
)
|