File size: 5,143 Bytes
7ef50cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import sys
import time
import torchaudio
import torch
from torch import nn
from scipy import signal
from scipy.io import wavfile
import numpy as np
import multiprocessing
from pydub import AudioSegment

multiprocessing.set_start_method("spawn", force=True)

now_directory = os.getcwd()
sys.path.append(now_directory)

from rvc.lib.utils import load_audio
from rvc.train.slicer import Slicer

# Constants
OVERLAP = 0.3
MAX_AMPLITUDE = 0.9
ALPHA = 0.75
HIGH_PASS_CUTOFF = 48
SAMPLE_RATE_16K = 16000


class PreProcess:
    def __init__(self, sr: int, exp_dir: str, per: float):
        self.slicer = Slicer(
            sr=sr,
            threshold=-42,
            min_length=1500,
            min_interval=400,
            hop_size=15,
            max_sil_kept=500,
        )
        self.sr = sr
        self.b_high, self.a_high = signal.butter(
            N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr
        )
        self.per = per
        self.exp_dir = exp_dir
        self.device = "cpu"
        self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
        self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")
        os.makedirs(self.gt_wavs_dir, exist_ok=True)
        os.makedirs(self.wavs16k_dir, exist_ok=True)

    def _normalize_audio(self, audio: torch.Tensor):
        tmp_max = torch.abs(audio).max()
        if tmp_max > 2.5:
            return None
        return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio

    def _write_audio(self, audio: torch.Tensor, filename: str, sr: int):
        audio = audio.cpu().numpy()
        wavfile.write(filename, sr, audio.astype(np.float32))

    def process_audio_segment(self, audio_segment: torch.Tensor, idx0: int, idx1: int):
        normalized_audio = self._normalize_audio(audio_segment)
        if normalized_audio is None:
            print(f"{idx0}-{idx1}-filtered")
            return

        gt_wav_path = os.path.join(self.gt_wavs_dir, f"{idx0}_{idx1}.wav")
        self._write_audio(normalized_audio, gt_wav_path, self.sr)

        resampler = torchaudio.transforms.Resample(
            orig_freq=self.sr, new_freq=SAMPLE_RATE_16K
        ).to(self.device)
        audio_16k = resampler(normalized_audio.float())
        wav_16k_path = os.path.join(self.wavs16k_dir, f"{idx0}_{idx1}.wav")
        self._write_audio(audio_16k, wav_16k_path, SAMPLE_RATE_16K)

    def process_audio(self, path: str, idx0: int):
        try:
            audio = load_audio(path, self.sr)
            audio = torch.tensor(
                signal.lfilter(self.b_high, self.a_high, audio), device=self.device
            ).float()

            idx1 = 0
            for audio_segment in self.slicer.slice(audio.cpu().numpy()):
                audio_segment = torch.tensor(audio_segment, device=self.device).float()
                i = 0
                while True:
                    start = int(self.sr * (self.per - OVERLAP) * i)
                    i += 1
                    if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
                        tmp_audio = audio_segment[
                            start : start + int(self.per * self.sr)
                        ]
                        self.process_audio_segment(tmp_audio, idx0, idx1)
                        idx1 += 1
                    else:
                        tmp_audio = audio_segment[start:]
                        self.process_audio_segment(tmp_audio, idx0, idx1)
                        idx1 += 1
                        break
        except Exception as error:
            print(f"An error occurred on {path} path: {error}")

    def process_audio_file(self, file_path_idx):
        file_path, idx0 = file_path_idx
        ext = os.path.splitext(file_path)[1].lower()
        if ext not in [".wav"]:
            audio = AudioSegment.from_file(file_path)
            file_path = os.path.join("/tmp", f"{idx0}.wav")
            audio.export(file_path, format="wav")
        self.process_audio(file_path, idx0)


def preprocess_training_set(
    input_root: str,
    sr: int,
    num_processes: int,
    exp_dir: str,
    per: float,
):
    start_time = time.time()

    pp = PreProcess(sr, exp_dir, per)
    print(f"Starting preprocess with {num_processes} processes...")

    files = [
        (os.path.join(input_root, f), idx)
        for idx, f in enumerate(os.listdir(input_root))
        if f.lower().endswith((".wav", ".mp3", ".flac", ".ogg"))
    ]

    ctx = multiprocessing.get_context("spawn")
    with ctx.Pool(processes=num_processes) as pool:
        pool.map(pp.process_audio_file, files)

    elapsed_time = time.time() - start_time
    print(f"Preprocess completed in {elapsed_time:.2f} seconds.")


if __name__ == "__main__":
    experiment_directory = str(sys.argv[1])
    input_root = str(sys.argv[2])
    sample_rate = int(sys.argv[3])
    percentage = float(sys.argv[4])
    num_processes = (
        int(sys.argv[5]) if len(sys.argv) > 5 else multiprocessing.cpu_count()
    )

    preprocess_training_set(
        input_root,
        sample_rate,
        num_processes,
        experiment_directory,
        percentage,
    )