File size: 35,743 Bytes
7ef50cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
import os
from multiprocessing import cpu_count
import sys
import shutil
import gradio as gr
from assets.i18n.i18n import I18nAuto
from core import (
    run_preprocess_script,
    run_extract_script,
    run_train_script,
    run_index_script,
    run_prerequisites_script,
)
from rvc.configs.config import max_vram_gpu, get_gpu_info, get_number_of_gpus
from rvc.lib.utils import format_title
from tabs.settings.restart import restart_applio

i18n = I18nAuto()
now_dir = os.getcwd()
sys.path.append(now_dir)

pretraineds_v1 = [
    (
        "pretrained_v1/",
        [
            "D32k.pth",
            "D40k.pth",
            "D48k.pth",
            "G32k.pth",
            "G40k.pth",
            "G48k.pth",
            "f0D32k.pth",
            "f0D40k.pth",
            "f0D48k.pth",
            "f0G32k.pth",
            "f0G40k.pth",
            "f0G48k.pth",
        ],
    ),
]

folder_mapping = {
    "pretrained_v1/": "rvc/models/pretraineds/pretrained_v1/",
}

sup_audioext = {
    "wav",
    "mp3",
    "flac",
    "ogg",
    "opus",
    "m4a",
    "mp4",
    "aac",
    "alac",
    "wma",
    "aiff",
    "webm",
    "ac3",
}

# Custom Pretraineds
pretraineds_custom_path = os.path.join(
    now_dir, "rvc", "models", "pretraineds", "pretraineds_custom"
)

pretraineds_custom_path_relative = os.path.relpath(pretraineds_custom_path, now_dir)

custom_embedder_root = os.path.join(
    now_dir, "rvc", "models", "embedders", "embedders_custom"
)
custom_embedder_root_relative = os.path.relpath(custom_embedder_root, now_dir)

os.makedirs(custom_embedder_root, exist_ok=True)
os.makedirs(pretraineds_custom_path_relative, exist_ok=True)


def get_pretrained_list(suffix):
    return [
        os.path.join(dirpath, filename)
        for dirpath, _, filenames in os.walk(pretraineds_custom_path_relative)
        for filename in filenames
        if filename.endswith(".pth") and suffix in filename
    ]


pretraineds_list_d = get_pretrained_list("D")
pretraineds_list_g = get_pretrained_list("G")


def refresh_custom_pretraineds():
    return (
        {"choices": sorted(get_pretrained_list("G")), "__type__": "update"},
        {"choices": sorted(get_pretrained_list("D")), "__type__": "update"},
    )


# Dataset Creator
datasets_path = os.path.join(now_dir, "assets", "datasets")

if not os.path.exists(datasets_path):
    os.makedirs(datasets_path)

datasets_path_relative = os.path.relpath(datasets_path, now_dir)


def get_datasets_list():
    return [
        dirpath
        for dirpath, _, filenames in os.walk(datasets_path_relative)
        if any(filename.endswith(tuple(sup_audioext)) for filename in filenames)
    ]


def refresh_datasets():
    return {"choices": sorted(get_datasets_list()), "__type__": "update"}


# Model Names
models_path = os.path.join(now_dir, "logs")


def get_models_list():
    return [
        os.path.basename(dirpath)
        for dirpath in os.listdir(models_path)
        if os.path.isdir(os.path.join(models_path, dirpath))
        and all(excluded not in dirpath for excluded in ["zips", "mute"])
    ]


def refresh_models():
    return {"choices": sorted(get_models_list()), "__type__": "update"}


# Refresh Models and Datasets
def refresh_models_and_datasets():
    return (
        {"choices": sorted(get_models_list()), "__type__": "update"},
        {"choices": sorted(get_datasets_list()), "__type__": "update"},
    )


# Refresh Custom Pretraineds
def get_embedder_custom_list():
    return [
        os.path.join(dirpath, filename)
        for dirpath, _, filenames in os.walk(custom_embedder_root_relative)
        for filename in filenames
        if filename.endswith(".pt")
    ]


def refresh_custom_embedder_list():
    return {"choices": sorted(get_embedder_custom_list()), "__type__": "update"}


# Drop Model
def save_drop_model(dropbox):
    if ".pth" not in dropbox:
        gr.Info(
            i18n(
                "The file you dropped is not a valid pretrained file. Please try again."
            )
        )
    else:
        file_name = os.path.basename(dropbox)
        pretrained_path = os.path.join(pretraineds_custom_path_relative, file_name)
        if os.path.exists(pretrained_path):
            os.remove(pretrained_path)
        os.rename(dropbox, pretrained_path)
        gr.Info(
            i18n(
                "Click the refresh button to see the pretrained file in the dropdown menu."
            )
        )
    return None


# Drop Dataset
def save_drop_dataset_audio(dropbox, dataset_name):
    if not dataset_name:
        gr.Info("Please enter a valid dataset name. Please try again.")
        return None, None
    else:
        file_extension = os.path.splitext(dropbox)[1][1:].lower()
        if file_extension not in sup_audioext:
            gr.Info("The file you dropped is not a valid audio file. Please try again.")
        else:
            dataset_name = format_title(dataset_name)
            audio_file = format_title(os.path.basename(dropbox))
            dataset_path = os.path.join(now_dir, "assets", "datasets", dataset_name)
            if not os.path.exists(dataset_path):
                os.makedirs(dataset_path)
            destination_path = os.path.join(dataset_path, audio_file)
            if os.path.exists(destination_path):
                os.remove(destination_path)
            os.rename(dropbox, destination_path)
            gr.Info(
                i18n(
                    "The audio file has been successfully added to the dataset. Please click the preprocess button."
                )
            )
            dataset_path = os.path.dirname(destination_path)
            relative_dataset_path = os.path.relpath(dataset_path, now_dir)

            return None, relative_dataset_path


# Drop Custom Embedder
def save_drop_custom_embedder(dropbox):
    if ".pt" not in dropbox:
        gr.Info(
            i18n("The file you dropped is not a valid embedder file. Please try again.")
        )
    else:
        file_name = os.path.basename(dropbox)
        custom_embedder_path = os.path.join(custom_embedder_root, file_name)
        if os.path.exists(custom_embedder_path):
            os.remove(custom_embedder_path)
        os.rename(dropbox, custom_embedder_path)
        gr.Info(
            i18n(
                "Click the refresh button to see the embedder file in the dropdown menu."
            )
        )
    return None


# Export
## Get Pth and Index Files
def get_pth_list():
    return [
        os.path.relpath(os.path.join(dirpath, filename), now_dir)
        for dirpath, _, filenames in os.walk(models_path)
        for filename in filenames
        if filename.endswith(".pth")
    ]


def get_index_list():
    return [
        os.path.relpath(os.path.join(dirpath, filename), now_dir)
        for dirpath, _, filenames in os.walk(models_path)
        for filename in filenames
        if filename.endswith(".index") and "trained" not in filename
    ]


def refresh_pth_and_index_list():
    return (
        {"choices": sorted(get_pth_list()), "__type__": "update"},
        {"choices": sorted(get_index_list()), "__type__": "update"},
    )


## Export Pth and Index Files
def export_pth(pth_path):
    if pth_path and os.path.exists(pth_path):
        return pth_path
    return None


def export_index(index_path):
    if index_path and os.path.exists(index_path):
        return index_path
    return None


## Upload to Google Drive
def upload_to_google_drive(pth_path, index_path):
    def upload_file(file_path):
        if file_path:
            try:
                gr.Info(f"Uploading {pth_path} to Google Drive...")
                google_drive_folder = "/content/drive/MyDrive/ApplioExported"
                if not os.path.exists(google_drive_folder):
                    os.makedirs(google_drive_folder)
                google_drive_file_path = os.path.join(
                    google_drive_folder, os.path.basename(file_path)
                )
                if os.path.exists(google_drive_file_path):
                    os.remove(google_drive_file_path)
                shutil.copy2(file_path, google_drive_file_path)
                gr.Info("File uploaded successfully.")
            except Exception as error:
                print(f"An error occurred uploading to Google Drive: {error}")
                gr.Info("Error uploading to Google Drive")

    upload_file(pth_path)
    upload_file(index_path)


# Train Tab
def train_tab():
    with gr.Accordion(i18n("Preprocess")):
        with gr.Row():
            with gr.Column():
                model_name = gr.Dropdown(
                    label=i18n("Model Name"),
                    info=i18n("Name of the new model."),
                    choices=get_models_list(),
                    value="my-project",
                    interactive=True,
                    allow_custom_value=True,
                )
                dataset_path = gr.Dropdown(
                    label=i18n("Dataset Path"),
                    info=i18n("Path to the dataset folder."),
                    # placeholder=i18n("Enter dataset path"),
                    choices=get_datasets_list(),
                    allow_custom_value=True,
                    interactive=True,
                )
                refresh = gr.Button(i18n("Refresh"))
                dataset_creator = gr.Checkbox(
                    label=i18n("Dataset Creator"),
                    value=False,
                    interactive=True,
                    visible=True,
                )

                with gr.Column(visible=False) as dataset_creator_settings:
                    with gr.Accordion(i18n("Dataset Creator")):
                        dataset_name = gr.Textbox(
                            label=i18n("Dataset Name"),
                            info=i18n("Name of the new dataset."),
                            placeholder=i18n("Enter dataset name"),
                            interactive=True,
                        )
                        upload_audio_dataset = gr.File(
                            label=i18n("Upload Audio Dataset"),
                            type="filepath",
                            interactive=True,
                        )

            with gr.Column():
                sampling_rate = gr.Radio(
                    label=i18n("Sampling Rate"),
                    info=i18n("The sampling rate of the audio files."),
                    choices=["32000", "40000", "48000"],
                    value="40000",
                    interactive=True,
                )

                rvc_version = gr.Radio(
                    label=i18n("RVC Version"),
                    info=i18n("The RVC version of the model."),
                    choices=["v1", "v2"],
                    value="v2",
                    interactive=True,
                )

                cpu_cores_preprocess = gr.Slider(
                    1,
                    64,
                    cpu_count(),
                    step=1,
                    label=i18n("CPU Cores"),
                    info=i18n(
                        "The number of CPU cores to use in the preprocess. The default setting are your cpu cores, which is recommended for most cases."
                    ),
                    interactive=True,
                )

        preprocess_output_info = gr.Textbox(
            label=i18n("Output Information"),
            info=i18n("The output information will be displayed here."),
            value="",
            max_lines=8,
            interactive=False,
        )

        with gr.Row():
            preprocess_button = gr.Button(i18n("Preprocess Dataset"))
            preprocess_button.click(
                fn=run_preprocess_script,
                inputs=[
                    model_name,
                    dataset_path,
                    sampling_rate,
                    cpu_cores_preprocess,
                ],
                outputs=[preprocess_output_info],
                api_name="preprocess_dataset",
            )

    with gr.Accordion(i18n("Extract")):
        with gr.Row():
            f0_method = gr.Radio(
                label=i18n("Pitch extraction algorithm"),
                info=i18n(
                    "Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
                ),
                choices=["crepe", "crepe-tiny", "rmvpe"],
                value="rmvpe",
                interactive=True,
            )

            embedder_model = gr.Radio(
                label=i18n("Embedder Model"),
                info=i18n("Model used for learning speaker embedding."),
                choices=[
                    "contentvec",
                    "japanese-hubert-base",
                    "chinese-hubert-large",
                    "custom",
                ],
                value="contentvec",
                interactive=True,
            )
        hop_length = gr.Slider(
            1,
            512,
            128,
            step=1,
            label=i18n("Hop Length"),
            info=i18n(
                "Denotes the duration it takes for the system to transition to a significant pitch change. Smaller hop lengths require more time for inference but tend to yield higher pitch accuracy."
            ),
            visible=False,
            interactive=True,
        )
        pitch_guidance_extract = gr.Checkbox(
            label=i18n("Pitch Guidance"),
            info=i18n(
                "By employing pitch guidance, it becomes feasible to mirror the intonation of the original voice, including its pitch. This feature is particularly valuable for singing and other scenarios where preserving the original melody or pitch pattern is essential."
            ),
            value=True,
            interactive=True,
        )

        with gr.Accordion(
            i18n(
                "We prioritize running the model extraction on the GPU for faster performance. If you prefer to use the CPU, simply leave the GPU field blank."
            ),
            open=False,
        ):
            with gr.Row():
                with gr.Column():
                    cpu_cores_extract = gr.Slider(
                        1,
                        64,
                        cpu_count(),
                        step=1,
                        label=i18n("CPU Cores"),
                        info=i18n(
                            "The number of CPU cores to use in the extraction process. The default setting are your cpu cores, which is recommended for most cases."
                        ),
                        interactive=True,
                    )

                with gr.Column():
                    gpu_extract = gr.Textbox(
                        label=i18n("GPU Number"),
                        info=i18n(
                            "Specify the number of GPUs you wish to utilize for extracting by entering them separated by hyphens (-)."
                        ),
                        placeholder=i18n("0 to ∞ separated by -"),
                        value=str(get_number_of_gpus()),
                        interactive=True,
                    )
                    gr.Textbox(
                        label=i18n("GPU Information"),
                        info=i18n("The GPU information will be displayed here."),
                        value=get_gpu_info(),
                        interactive=False,
                    )

            with gr.Column(visible=False) as embedder_custom:
                with gr.Accordion(i18n("Custom Embedder"), open=True):
                    embedder_upload_custom = gr.File(
                        label=i18n("Upload Custom Embedder"),
                        type="filepath",
                        interactive=True,
                    )
                    embedder_custom_refresh = gr.Button(i18n("Refresh"))
                    embedder_model_custom = gr.Dropdown(
                        label=i18n("Custom Embedder"),
                        info=i18n(
                            "Select the custom embedder to use for the conversion."
                        ),
                        choices=sorted(get_embedder_custom_list()),
                        interactive=True,
                        allow_custom_value=True,
                    )

        extract_output_info = gr.Textbox(
            label=i18n("Output Information"),
            info=i18n("The output information will be displayed here."),
            value="",
            max_lines=8,
            interactive=False,
        )
        extract_button = gr.Button(i18n("Extract Features"))
        extract_button.click(
            fn=run_extract_script,
            inputs=[
                model_name,
                rvc_version,
                f0_method,
                pitch_guidance_extract,
                hop_length,
                cpu_cores_extract,
                gpu_extract,
                sampling_rate,
                embedder_model,
                embedder_model_custom,
            ],
            outputs=[extract_output_info],
            api_name="extract_features",
        )

    with gr.Accordion(i18n("Train")):
        with gr.Row():
            batch_size = gr.Slider(
                1,
                50,
                max_vram_gpu(0),
                step=1,
                label=i18n("Batch Size"),
                info=i18n(
                    "It's advisable to align it with the available VRAM of your GPU. A setting of 4 offers improved accuracy but slower processing, while 8 provides faster and standard results."
                ),
                interactive=True,
            )
            save_every_epoch = gr.Slider(
                1,
                100,
                10,
                step=1,
                label=i18n("Save Every Epoch"),
                info=i18n("Determine at how many epochs the model will saved at."),
                interactive=True,
            )
            total_epoch = gr.Slider(
                1,
                10000,
                500,
                step=1,
                label=i18n("Total Epoch"),
                info=i18n(
                    "Specifies the overall quantity of epochs for the model training process."
                ),
                interactive=True,
            )
        with gr.Accordion(i18n("Advanced Settings"), open=False):
            with gr.Row():
                with gr.Column():
                    save_only_latest = gr.Checkbox(
                        label=i18n("Save Only Latest"),
                        info=i18n(
                            "Enabling this setting will result in the G and D files saving only their most recent versions, effectively conserving storage space."
                        ),
                        value=False,
                        interactive=True,
                    )
                    save_every_weights = gr.Checkbox(
                        label=i18n("Save Every Weights"),
                        info=i18n(
                            "This setting enables you to save the weights of the model at the conclusion of each epoch."
                        ),
                        value=True,
                        interactive=True,
                    )
                    pretrained = gr.Checkbox(
                        label=i18n("Pretrained"),
                        info=i18n(
                            "Utilize pretrained models when training your own. This approach reduces training duration and enhances overall quality."
                        ),
                        value=True,
                        interactive=True,
                    )
                with gr.Column():
                    sync_graph = gr.Checkbox(
                        label=i18n("Sync Graph"),
                        info=i18n(
                            "Synchronize the graph of the tensorbaord. Only enable this setting if you are training a new model."
                        ),
                        value=False,
                        interactive=True,
                    )
                    cache_dataset_in_gpu = gr.Checkbox(
                        label=i18n("Cache Dataset in GPU"),
                        info=i18n(
                            "Cache the dataset in GPU memory to speed up the training process."
                        ),
                        value=False,
                        interactive=True,
                    )
                    pitch_guidance = gr.Checkbox(
                        label=i18n("Pitch Guidance"),
                        info=i18n(
                            "By employing pitch guidance, it becomes feasible to mirror the intonation of the original voice, including its pitch. This feature is particularly valuable for singing and other scenarios where preserving the original melody or pitch pattern is essential."
                        ),
                        value=True,
                        interactive=True,
                    )
            with gr.Column():
                custom_pretrained = gr.Checkbox(
                    label=i18n("Custom Pretrained"),
                    info=i18n(
                        "Utilizing custom pretrained models can lead to superior results, as selecting the most suitable pretrained models tailored to the specific use case can significantly enhance performance."
                    ),
                    value=False,
                    interactive=True,
                )
                with gr.Column(visible=False) as pretrained_custom_settings:
                    with gr.Accordion(i18n("Pretrained Custom Settings")):
                        upload_pretrained = gr.File(
                            label=i18n("Upload Pretrained Model"),
                            type="filepath",
                            interactive=True,
                        )
                        refresh_custom_pretaineds_button = gr.Button(
                            i18n("Refresh Custom Pretraineds")
                        )
                        g_pretrained_path = gr.Dropdown(
                            label=i18n("Custom Pretrained G"),
                            info=i18n(
                                "Select the custom pretrained model for the generator."
                            ),
                            choices=sorted(pretraineds_list_g),
                            interactive=True,
                            allow_custom_value=True,
                        )
                        d_pretrained_path = gr.Dropdown(
                            label=i18n("Custom Pretrained D"),
                            info=i18n(
                                "Select the custom pretrained model for the discriminator."
                            ),
                            choices=sorted(pretraineds_list_d),
                            interactive=True,
                            allow_custom_value=True,
                        )
                multiple_gpu = gr.Checkbox(
                    label=i18n("GPU Settings"),
                    info=(
                        i18n(
                            "Sets advanced GPU settings, recommended for users with better GPU architecture."
                        )
                    ),
                    value=False,
                    interactive=True,
                )
                with gr.Column(visible=False) as gpu_custom_settings:
                    with gr.Accordion(i18n("GPU Settings")):
                        gpu = gr.Textbox(
                            label=i18n("GPU Number"),
                            info=i18n(
                                "Specify the number of GPUs you wish to utilize for training by entering them separated by hyphens (-)."
                            ),
                            placeholder=i18n("0 to ∞ separated by -"),
                            value=str(get_number_of_gpus()),
                            interactive=True,
                        )
                        gr.Textbox(
                            label=i18n("GPU Information"),
                            info=i18n("The GPU information will be displayed here."),
                            value=get_gpu_info(),
                            interactive=False,
                        )
                overtraining_detector = gr.Checkbox(
                    label=i18n("Overtraining Detector"),
                    info=i18n(
                        "Detect overtraining to prevent the model from learning the training data too well and losing the ability to generalize to new data."
                    ),
                    value=False,
                    interactive=True,
                )
                with gr.Column(visible=False) as overtraining_settings:
                    with gr.Accordion(i18n("Overtraining Detector Settings")):
                        overtraining_threshold = gr.Slider(
                            1,
                            100,
                            50,
                            step=1,
                            label=i18n("Overtraining Threshold"),
                            info=i18n(
                                "Set the maximum number of epochs you want your model to stop training if no improvement is detected."
                            ),
                            interactive=True,
                        )
                index_algorithm = gr.Radio(
                    label=i18n("Index Algorithm"),
                    info=i18n(
                        "KMeans is a clustering algorithm that divides the dataset into K clusters. This setting is particularly useful for large datasets."
                    ),
                    choices=["Auto", "Faiss", "KMeans"],
                    value="Auto",
                    interactive=True,
                )

        with gr.Row():
            train_output_info = gr.Textbox(
                label=i18n("Output Information"),
                info=i18n("The output information will be displayed here."),
                value="",
                max_lines=8,
                interactive=False,
            )

        with gr.Row():
            train_button = gr.Button(i18n("Start Training"))
            train_button.click(
                fn=run_train_script,
                inputs=[
                    model_name,
                    rvc_version,
                    save_every_epoch,
                    save_only_latest,
                    save_every_weights,
                    total_epoch,
                    sampling_rate,
                    batch_size,
                    gpu,
                    pitch_guidance,
                    overtraining_detector,
                    overtraining_threshold,
                    pretrained,
                    sync_graph,
                    index_algorithm,
                    cache_dataset_in_gpu,
                    custom_pretrained,
                    g_pretrained_path,
                    d_pretrained_path,
                ],
                outputs=[train_output_info],
                api_name="start_training",
            )

            stop_train_button = gr.Button(
                i18n("Stop Training & Restart Applio"), visible=False
            )
            stop_train_button.click(
                fn=restart_applio,
                inputs=[],
                outputs=[],
            )

            index_button = gr.Button(i18n("Generate Index"))
            index_button.click(
                fn=run_index_script,
                inputs=[model_name, rvc_version, index_algorithm],
                outputs=[train_output_info],
                api_name="generate_index",
            )

    with gr.Accordion(i18n("Export Model"), open=False):
        if not os.name == "nt":
            gr.Markdown(
                i18n(
                    "The button 'Upload' is only for google colab: Uploads the exported files to the ApplioExported folder in your Google Drive."
                )
            )
        with gr.Row():
            with gr.Column():
                pth_file_export = gr.File(
                    label=i18n("Exported Pth file"),
                    type="filepath",
                    value=None,
                    interactive=False,
                )
                pth_dropdown_export = gr.Dropdown(
                    label=i18n("Pth file"),
                    info=i18n("Select the pth file to be exported"),
                    choices=get_pth_list(),
                    value=None,
                    interactive=True,
                    allow_custom_value=True,
                )
            with gr.Column():
                index_file_export = gr.File(
                    label=i18n("Exported Index File"),
                    type="filepath",
                    value=None,
                    interactive=False,
                )
                index_dropdown_export = gr.Dropdown(
                    label=i18n("Index File"),
                    info=i18n("Select the index file to be exported"),
                    choices=get_index_list(),
                    value=None,
                    interactive=True,
                    allow_custom_value=True,
                )
        with gr.Row():
            with gr.Column():
                refresh_export = gr.Button(i18n("Refresh"))
                if not os.name == "nt":
                    upload_exported = gr.Button(i18n("Upload"), variant="primary")
                    upload_exported.click(
                        fn=upload_to_google_drive,
                        inputs=[pth_dropdown_export, index_dropdown_export],
                        outputs=[],
                    )

            def toggle_visible(checkbox):
                return {"visible": checkbox, "__type__": "update"}

            def toggle_visible_hop_length(f0_method):
                if f0_method == "crepe" or f0_method == "crepe-tiny":
                    return {"visible": True, "__type__": "update"}
                return {"visible": False, "__type__": "update"}

            def toggle_pretrained(pretrained, custom_pretrained):
                if custom_pretrained == False:
                    return {"visible": pretrained, "__type__": "update"}, {
                        "visible": False,
                        "__type__": "update",
                    }
                else:
                    return {"visible": pretrained, "__type__": "update"}, {
                        "visible": pretrained,
                        "__type__": "update",
                    }

            def enable_stop_train_button():
                return {"visible": False, "__type__": "update"}, {
                    "visible": True,
                    "__type__": "update",
                }

            def disable_stop_train_button():
                return {"visible": True, "__type__": "update"}, {
                    "visible": False,
                    "__type__": "update",
                }

            def download_prerequisites(version):
                for remote_folder, file_list in pretraineds_v1:
                    local_folder = folder_mapping.get(remote_folder, "")
                    missing = False
                    for file in file_list:
                        destination_path = os.path.join(local_folder, file)
                        if not os.path.exists(destination_path):
                            missing = True
                if version == "v1" and missing == True:
                    gr.Info(
                        "Downloading prerequisites... Please wait till it finishes to start preprocessing."
                    )
                    run_prerequisites_script("True", "False", "True", "True")
                    gr.Info(
                        "Prerequisites downloaded successfully, you may now start preprocessing."
                    )

            def toggle_visible_embedder_custom(embedder_model):
                if embedder_model == "custom":
                    return {"visible": True, "__type__": "update"}
                return {"visible": False, "__type__": "update"}

            rvc_version.change(
                fn=download_prerequisites,
                inputs=[rvc_version],
                outputs=[],
            )

            refresh.click(
                fn=refresh_models_and_datasets,
                inputs=[],
                outputs=[model_name, dataset_path],
            )

            dataset_creator.change(
                fn=toggle_visible,
                inputs=[dataset_creator],
                outputs=[dataset_creator_settings],
            )

            upload_audio_dataset.upload(
                fn=save_drop_dataset_audio,
                inputs=[upload_audio_dataset, dataset_name],
                outputs=[upload_audio_dataset, dataset_path],
            )

            f0_method.change(
                fn=toggle_visible_hop_length,
                inputs=[f0_method],
                outputs=[hop_length],
            )

            embedder_model.change(
                fn=toggle_visible_embedder_custom,
                inputs=[embedder_model],
                outputs=[embedder_custom],
            )
            embedder_upload_custom.upload(
                fn=save_drop_custom_embedder,
                inputs=[embedder_upload_custom],
                outputs=[embedder_upload_custom],
            )
            embedder_custom_refresh.click(
                fn=refresh_custom_embedder_list,
                inputs=[],
                outputs=[embedder_model_custom],
            )

            pretrained.change(
                fn=toggle_pretrained,
                inputs=[pretrained, custom_pretrained],
                outputs=[custom_pretrained, pretrained_custom_settings],
            )

            custom_pretrained.change(
                fn=toggle_visible,
                inputs=[custom_pretrained],
                outputs=[pretrained_custom_settings],
            )

            refresh_custom_pretaineds_button.click(
                fn=refresh_custom_pretraineds,
                inputs=[],
                outputs=[g_pretrained_path, d_pretrained_path],
            )

            upload_pretrained.upload(
                fn=save_drop_model,
                inputs=[upload_pretrained],
                outputs=[upload_pretrained],
            )

            overtraining_detector.change(
                fn=toggle_visible,
                inputs=[overtraining_detector],
                outputs=[overtraining_settings],
            )

            multiple_gpu.change(
                fn=toggle_visible,
                inputs=[multiple_gpu],
                outputs=[gpu_custom_settings],
            )

            train_button.click(
                fn=enable_stop_train_button,
                inputs=[],
                outputs=[train_button, stop_train_button],
            )

            train_output_info.change(
                fn=disable_stop_train_button,
                inputs=[],
                outputs=[train_button, stop_train_button],
            )

            pth_dropdown_export.change(
                fn=export_pth,
                inputs=[pth_dropdown_export],
                outputs=[pth_file_export],
            )

            index_dropdown_export.change(
                fn=export_index,
                inputs=[index_dropdown_export],
                outputs=[index_file_export],
            )

            refresh_export.click(
                fn=refresh_pth_and_index_list,
                inputs=[],
                outputs=[pth_dropdown_export, index_dropdown_export],
            )