diff --git "a/app.py" "b/app.py" new file mode 100644--- /dev/null +++ "b/app.py" @@ -0,0 +1,3162 @@ +import os, sys +os.system("pip install pyworld") # ==0.3.3 + +now_dir = os.getcwd() +sys.path.append(now_dir) +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +os.environ["OPENBLAS_NUM_THREADS"] = "1" +os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" + +# Download models +shell_script = './tools/dlmodels.sh' +os.system(f'chmod +x {shell_script}') +os.system('apt install git-lfs') +os.system('git lfs install') +os.system('apt-get -y install aria2') +os.system('aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d . -o hubert_base.pt') +try: + return_code = os.system(shell_script) + if return_code == 0: + print("Shell script executed successfully.") + else: + print(f"Shell script failed with return code {return_code}") +except Exception as e: + print(f"An error occurred: {e}") + + +import logging +import shutil +import threading +import lib.globals.globals as rvc_globals +from LazyImport import lazyload +import mdx +from mdx_processing_script import get_model_list,id_to_ptm,prepare_mdx,run_mdx +math = lazyload('math') +import traceback +import warnings +tensorlowest = lazyload('tensorlowest') +from random import shuffle +from subprocess import Popen +from time import sleep +import json +import pathlib + +import fairseq +logging.getLogger("faiss").setLevel(logging.WARNING) +import faiss +gr = lazyload("gradio") +np = lazyload("numpy") +torch = lazyload('torch') +re = lazyload('regex') +SF = lazyload("soundfile") +SFWrite = SF.write +from dotenv import load_dotenv +from sklearn.cluster import MiniBatchKMeans +import datetime + + +from glob import glob1 +import signal +from signal import SIGTERM +import librosa + +from configs.config import Config +from i18n import I18nAuto +from infer.lib.train.process_ckpt import ( + change_info, + extract_small_model, + merge, + show_info, +) +#from infer.modules.uvr5.modules import uvr +from infer.modules.vc.modules import VC +from infer.modules.vc.utils import * +from infer.modules.vc.pipeline import Pipeline +import lib.globals.globals as rvc_globals +math = lazyload('math') +ffmpeg = lazyload('ffmpeg') +import nltk +nltk.download('punkt', quiet=True) +from nltk.tokenize import sent_tokenize +from bark import SAMPLE_RATE + +import easy_infer +import audioEffects +from infer.lib.csvutil import CSVutil + +from lib.infer_pack.models import ( + SynthesizerTrnMs256NSFsid, + SynthesizerTrnMs256NSFsid_nono, + SynthesizerTrnMs768NSFsid, + SynthesizerTrnMs768NSFsid_nono, +) +from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM +from infer_uvr5 import _audio_pre_, _audio_pre_new +from MDXNet import MDXNetDereverb +from infer.lib.audio import load_audio + + +from sklearn.cluster import MiniBatchKMeans + +import time +import csv + +from shlex import quote as SQuote + + + + +RQuote = lambda val: SQuote(str(val)) + +tmp = os.path.join(now_dir, "TEMP") +runtime_dir = os.path.join(now_dir, "runtime/Lib/site-packages") +directories = ['logs', 'audios', 'datasets', 'weights', 'audio-others' , 'audio-outputs'] + +shutil.rmtree(tmp, ignore_errors=True) +shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) +shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) + +os.makedirs(tmp, exist_ok=True) +for folder in directories: + os.makedirs(os.path.join(now_dir, folder), exist_ok=True) + + +os.makedirs(tmp, exist_ok=True) +os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) +os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) +os.environ["TEMP"] = tmp +warnings.filterwarnings("ignore") +torch.manual_seed(114514) +logging.getLogger("numba").setLevel(logging.WARNING) + +logger = logging.getLogger(__name__) + + +if not os.path.isdir("csvdb/"): + os.makedirs("csvdb") + frmnt, stp = open("csvdb/formanting.csv", "w"), open("csvdb/stop.csv", "w") + frmnt.close() + stp.close() + +global DoFormant, Quefrency, Timbre + +try: + DoFormant, Quefrency, Timbre = CSVutil("csvdb/formanting.csv", "r", "formanting") + DoFormant = ( + lambda DoFormant: True + if DoFormant.lower() == "true" + else (False if DoFormant.lower() == "false" else DoFormant) + )(DoFormant) +except (ValueError, TypeError, IndexError): + DoFormant, Quefrency, Timbre = False, 1.0, 1.0 + CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre) + +load_dotenv() +config = Config() +vc = VC(config) + +if config.dml == True: + + def forward_dml(ctx, x, scale): + ctx.scale = scale + res = x.clone().detach() + return res + + fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml + +i18n = I18nAuto() +i18n.print() +# 判断是否有能用来训练和加速推理的N卡 +ngpu = torch.cuda.device_count() +gpu_infos = [] +mem = [] +if_gpu_ok = False + +isinterrupted = 0 + + +if torch.cuda.is_available() or ngpu != 0: + for i in range(ngpu): + gpu_name = torch.cuda.get_device_name(i) + if any( + value in gpu_name.upper() + for value in [ + "10", + "16", + "20", + "30", + "40", + "A2", + "A3", + "A4", + "P4", + "A50", + "500", + "A60", + "70", + "80", + "90", + "M4", + "T4", + "TITAN", + ] + ): + # A10#A100#V100#A40#P40#M40#K80#A4500 + if_gpu_ok = True # 至少有一张能用的N卡 + gpu_infos.append("%s\t%s" % (i, gpu_name)) + mem.append( + int( + torch.cuda.get_device_properties(i).total_memory + / 1024 + / 1024 + / 1024 + + 0.4 + ) + ) +if if_gpu_ok and len(gpu_infos) > 0: + gpu_info = "\n".join(gpu_infos) + default_batch_size = min(mem) // 2 +else: + gpu_info = "Unfortunately, there is no compatible GPU available to support your training." + default_batch_size = 1 +gpus = "-".join([i[0] for i in gpu_infos]) + +class ToolButton(gr.Button, gr.components.FormComponent): + """Small button with single emoji as text, fits inside gradio forms""" + + def __init__(self, **kwargs): + super().__init__(variant="tool", **kwargs) + + def get_block_name(self): + return "button" + + +hubert_model = None +weight_root = os.getenv("weight_root") +weight_uvr5_root = os.getenv("weight_uvr5_root") +index_root = os.getenv("index_root") +datasets_root = "datasets" +fshift_root = "formantshiftcfg" +audio_root = "audios" +audio_others_root = "audio-others" + +sup_audioext = {'wav', 'mp3', 'flac', 'ogg', 'opus', + 'm4a', 'mp4', 'aac', 'alac', 'wma', + 'aiff', 'webm', 'ac3'} + +names = [os.path.join(root, file) + for root, _, files in os.walk(weight_root) + for file in files + if file.endswith((".pth", ".onnx"))] + +indexes_list = [os.path.join(root, name) + for root, _, files in os.walk(index_root, topdown=False) + for name in files + if name.endswith(".index") and "trained" not in name] + +audio_paths = [os.path.join(root, name) + for root, _, files in os.walk(audio_root, topdown=False) + for name in files + if name.endswith(tuple(sup_audioext))] + +audio_others_paths = [os.path.join(root, name) + for root, _, files in os.walk(audio_others_root, topdown=False) + for name in files + if name.endswith(tuple(sup_audioext))] + +uvr5_names = [name.replace(".pth", "") + for name in os.listdir(weight_uvr5_root) + if name.endswith(".pth") or "onnx" in name] + + +check_for_name = lambda: sorted(names)[0] if names else '' + +datasets=[] +for foldername in os.listdir(os.path.join(now_dir, datasets_root)): + if "." not in foldername: + datasets.append(os.path.join(easy_infer.find_folder_parent(".","pretrained"),"datasets",foldername)) + +def get_dataset(): + if len(datasets) > 0: + return sorted(datasets)[0] + else: + return '' + +def update_model_choices(select_value): + model_ids = get_model_list() + model_ids_list = list(model_ids) + if select_value == "VR": + return {"choices": uvr5_names, "__type__": "update"} + elif select_value == "MDX": + return {"choices": model_ids_list, "__type__": "update"} + +set_bark_voice = easy_infer.get_bark_voice() +set_edge_voice = easy_infer.get_edge_voice() + +def update_tts_methods_voice(select_value): + #["Edge-tts", "RVG-tts", "Bark-tts"] + if select_value == "Edge-tts": + return {"choices": set_edge_voice, "value": "", "__type__": "update"} + elif select_value == "Bark-tts": + return {"choices": set_bark_voice, "value": "", "__type__": "update"} + + +def update_dataset_list(name): + new_datasets = [] + for foldername in os.listdir(os.path.join(now_dir, datasets_root)): + if "." not in foldername: + new_datasets.append(os.path.join(easy_infer.find_folder_parent(".","pretrained"),"datasets",foldername)) + return gr.Dropdown.update(choices=new_datasets) + +def get_indexes(): + indexes_list = [ + os.path.join(dirpath, filename) + for dirpath, _, filenames in os.walk(index_root) + for filename in filenames + if filename.endswith(".index") and "trained" not in filename + ] + + return indexes_list if indexes_list else '' + +def get_fshift_presets(): + fshift_presets_list = [ + os.path.join(dirpath, filename) + for dirpath, _, filenames in os.walk(fshift_root) + for filename in filenames + if filename.endswith(".txt") + ] + + return fshift_presets_list if fshift_presets_list else '' + +import soundfile as sf + +def generate_output_path(output_folder, base_name, extension): + # Generar un nombre único para el archivo de salida + index = 1 + while True: + output_path = os.path.join(output_folder, f"{base_name}_{index}.{extension}") + if not os.path.exists(output_path): + return output_path + index += 1 + +def combine_and_save_audios(audio1_path, audio2_path, output_path, volume_factor_audio1, volume_factor_audio2): + audio1, sr1 = librosa.load(audio1_path, sr=None) + audio2, sr2 = librosa.load(audio2_path, sr=None) + + # Alinear las tasas de muestreo + if sr1 != sr2: + if sr1 > sr2: + audio2 = librosa.resample(audio2, orig_sr=sr2, target_sr=sr1) + else: + audio1 = librosa.resample(audio1, orig_sr=sr1, target_sr=sr2) + + # Ajustar los audios para que tengan la misma longitud + target_length = min(len(audio1), len(audio2)) + audio1 = librosa.util.fix_length(audio1, target_length) + audio2 = librosa.util.fix_length(audio2, target_length) + + # Ajustar el volumen de los audios multiplicando por el factor de ganancia + if volume_factor_audio1 != 1.0: + audio1 *= volume_factor_audio1 + if volume_factor_audio2 != 1.0: + audio2 *= volume_factor_audio2 + + # Combinar los audios + combined_audio = audio1 + audio2 + + sf.write(output_path, combined_audio, sr1) + +# Resto de tu código... + +# Define función de conversión llamada por el botón +def audio_combined(audio1_path, audio2_path, volume_factor_audio1=1.0, volume_factor_audio2=1.0, reverb_enabled=False, compressor_enabled=False, noise_gate_enabled=False): + output_folder = os.path.join(now_dir, "audio-outputs") + os.makedirs(output_folder, exist_ok=True) + + # Generar nombres únicos para los archivos de salida + base_name = "combined_audio" + extension = "wav" + output_path = generate_output_path(output_folder, base_name, extension) + print(reverb_enabled) + print(compressor_enabled) + print(noise_gate_enabled) + + if reverb_enabled or compressor_enabled or noise_gate_enabled: + # Procesa el primer audio con los efectos habilitados + base_name = "effect_audio" + output_path = generate_output_path(output_folder, base_name, extension) + processed_audio_path = audioEffects.process_audio(audio2_path, output_path, reverb_enabled, compressor_enabled, noise_gate_enabled) + base_name = "combined_audio" + output_path = generate_output_path(output_folder, base_name, extension) + # Combina el audio procesado con el segundo audio usando audio_combined + combine_and_save_audios(audio1_path, processed_audio_path, output_path, volume_factor_audio1, volume_factor_audio2) + + return i18n("Conversion complete!"), output_path + else: + base_name = "combined_audio" + output_path = generate_output_path(output_folder, base_name, extension) + # No hay efectos habilitados, combina directamente los audios sin procesar + combine_and_save_audios(audio1_path, audio2_path, output_path, volume_factor_audio1, volume_factor_audio2) + + return i18n("Conversion complete!"), output_path + + + + +def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0,architecture): + infos = [] + if architecture == "VR": + try: + inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]] + usable_files = [os.path.join(inp_root, file) + for file in os.listdir(inp_root) + if file.endswith(tuple(sup_audioext))] + + + pre_fun = MDXNetDereverb(15) if model_name == "onnx_dereverb_By_FoxJoy" else (_audio_pre_ if "DeEcho" not in model_name else _audio_pre_new)( + agg=int(agg), + model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), + device=config.device, + is_half=config.is_half, + ) + + try: + if paths != None: + paths = [path.name for path in paths] + else: + paths = usable_files + + except: + traceback.print_exc() + paths = usable_files + print(paths) + for path in paths: + inp_path = os.path.join(inp_root, path) + need_reformat, done = 1, 0 + + try: + info = ffmpeg.probe(inp_path, cmd="ffprobe") + if info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100": + need_reformat = 0 + pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0) + done = 1 + except: + traceback.print_exc() + + if need_reformat: + tmp_path = f"{tmp}/{os.path.basename(RQuote(inp_path))}.reformatted.wav" + os.system(f"ffmpeg -i {RQuote(inp_path)} -vn -acodec pcm_s16le -ac 2 -ar 44100 {RQuote(tmp_path)} -y") + inp_path = tmp_path + + try: + if not done: + pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal, format0) + infos.append(f"{os.path.basename(inp_path)}->Success") + yield "\n".join(infos) + except: + infos.append(f"{os.path.basename(inp_path)}->{traceback.format_exc()}") + yield "\n".join(infos) + except: + infos.append(traceback.format_exc()) + yield "\n".join(infos) + finally: + try: + if model_name == "onnx_dereverb_By_FoxJoy": + del pre_fun.pred.model + del pre_fun.pred.model_ + else: + del pre_fun.model + + del pre_fun + except: traceback.print_exc() + + print("clean_empty_cache") + + if torch.cuda.is_available(): torch.cuda.empty_cache() + + yield "\n".join(infos) + elif architecture == "MDX": + try: + infos.append(i18n("Starting audio conversion... (This might take a moment)")) + yield "\n".join(infos) + inp_root, save_root_vocal, save_root_ins = [x.strip(" ").strip('"').strip("\n").strip('"').strip(" ") for x in [inp_root, save_root_vocal, save_root_ins]] + + usable_files = [os.path.join(inp_root, file) + for file in os.listdir(inp_root) + if file.endswith(tuple(sup_audioext))] + try: + if paths != None: + paths = [path.name for path in paths] + else: + paths = usable_files + + except: + traceback.print_exc() + paths = usable_files + print(paths) + invert=True + denoise=True + use_custom_parameter=True + dim_f=3072 + dim_t=256 + n_fft=7680 + use_custom_compensation=True + compensation=1.025 + suffix = "Vocals_custom" #@param ["Vocals", "Drums", "Bass", "Other"]{allow-input: true} + suffix_invert = "Instrumental_custom" #@param ["Instrumental", "Drumless", "Bassless", "Instruments"]{allow-input: true} + print_settings = True # @param{type:"boolean"} + onnx = id_to_ptm(model_name) + compensation = compensation if use_custom_compensation or use_custom_parameter else None + mdx_model = prepare_mdx(onnx,use_custom_parameter, dim_f, dim_t, n_fft, compensation=compensation) + + + for path in paths: + #inp_path = os.path.join(inp_root, path) + suffix_naming = suffix if use_custom_parameter else None + diff_suffix_naming = suffix_invert if use_custom_parameter else None + run_mdx(onnx, mdx_model, path, format0, diff=invert,suffix=suffix_naming,diff_suffix=diff_suffix_naming,denoise=denoise) + + if print_settings: + print() + print('[MDX-Net_Colab settings used]') + print(f'Model used: {onnx}') + print(f'Model MD5: {mdx.MDX.get_hash(onnx)}') + print(f'Model parameters:') + print(f' -dim_f: {mdx_model.dim_f}') + print(f' -dim_t: {mdx_model.dim_t}') + print(f' -n_fft: {mdx_model.n_fft}') + print(f' -compensation: {mdx_model.compensation}') + print() + print('[Input file]') + print('filename(s): ') + for filename in paths: + print(f' -{filename}') + infos.append(f"{os.path.basename(filename)}->Success") + yield "\n".join(infos) + except: + infos.append(traceback.format_exc()) + yield "\n".join(infos) + finally: + try: + del mdx_model + except: traceback.print_exc() + + print("clean_empty_cache") + + if torch.cuda.is_available(): torch.cuda.empty_cache() + + + + + +def change_choices(): + names = [os.path.join(root, file) + for root, _, files in os.walk(weight_root) + for file in files + if file.endswith((".pth", ".onnx"))] + indexes_list = [os.path.join(root, name) for root, _, files in os.walk(index_root, topdown=False) for name in files if name.endswith(".index") and "trained" not in name] + audio_paths = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))] + + + return ( + {"choices": sorted(names), "__type__": "update"}, + {"choices": sorted(indexes_list), "__type__": "update"}, + {"choices": sorted(audio_paths), "__type__": "update"} + ) +def change_choices2(): + names = [os.path.join(root, file) + for root, _, files in os.walk(weight_root) + for file in files + if file.endswith((".pth", ".onnx"))] + indexes_list = [os.path.join(root, name) for root, _, files in os.walk(index_root, topdown=False) for name in files if name.endswith(".index") and "trained" not in name] + + + return ( + {"choices": sorted(names), "__type__": "update"}, + {"choices": sorted(indexes_list), "__type__": "update"}, + ) +def change_choices3(): + + audio_paths = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))] + audio_others_paths = [os.path.join(audio_others_root, file) for file in os.listdir(os.path.join(now_dir, "audio-others"))] + + + return ( + {"choices": sorted(audio_others_paths), "__type__": "update"}, + {"choices": sorted(audio_paths), "__type__": "update"} + ) + +def clean(): + return {"value": "", "__type__": "update"} +def export_onnx(): + from infer.modules.onnx.export import export_onnx as eo + + eo() + +sr_dict = { + "32k": 32000, + "40k": 40000, + "48k": 48000, +} + + +def if_done(done, p): + while 1: + if p.poll() is None: + sleep(0.5) + else: + break + done[0] = True + + +def if_done_multi(done, ps): + while 1: + # poll==None代表进程未结束 + # 只要有一个进程未结束都不停 + flag = 1 + for p in ps: + if p.poll() is None: + flag = 0 + sleep(0.5) + break + if flag == 1: + break + done[0] = True + +def formant_enabled( + cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button +): + if cbox: + DoFormant = True + CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre) + + # print(f"is checked? - {cbox}\ngot {DoFormant}") + + return ( + {"value": True, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + ) + + else: + DoFormant = False + CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre) + + # print(f"is checked? - {cbox}\ngot {DoFormant}") + return ( + {"value": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + ) + + +def formant_apply(qfrency, tmbre): + Quefrency = qfrency + Timbre = tmbre + DoFormant = True + CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre) + + return ( + {"value": Quefrency, "__type__": "update"}, + {"value": Timbre, "__type__": "update"}, + ) + +def update_fshift_presets(preset, qfrency, tmbre): + + if preset: + with open(preset, 'r') as p: + content = p.readlines() + qfrency, tmbre = content[0].strip(), content[1] + + formant_apply(qfrency, tmbre) + else: + qfrency, tmbre = preset_apply(preset, qfrency, tmbre) + + return ( + {"choices": get_fshift_presets(), "__type__": "update"}, + {"value": qfrency, "__type__": "update"}, + {"value": tmbre, "__type__": "update"}, + ) + +def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): + sr = sr_dict[sr] + os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) + f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") + f.close() + per = 3.0 if config.is_half else 3.7 + cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % ( + config.python_cmd, + trainset_dir, + sr, + n_p, + now_dir, + exp_dir, + config.noparallel, + per, + ) + logger.info(cmd) + p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + done = [False] + threading.Thread( + target=if_done, + args=( + done, + p, + ), + ).start() + while 1: + with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: + yield (f.read()) + sleep(1) + if done[0]: + break + with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: + log = f.read() + logger.info(log) + yield log + + +def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl, gpus_rmvpe): + gpus = gpus.split("-") + os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) + f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") + f.close() + if if_f0: + if f0method != "rmvpe_gpu": + cmd = ( + '"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s' + % ( + config.python_cmd, + now_dir, + exp_dir, + n_p, + f0method, + echl, + ) + ) + logger.info(cmd) + p = Popen( + cmd, shell=True, cwd=now_dir + ) # , stdin=PIPE, stdout=PIPE,stderr=PIPE + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + done = [False] + threading.Thread( + target=if_done, + args=( + done, + p, + ), + ).start() + else: + if gpus_rmvpe != "-": + gpus_rmvpe = gpus_rmvpe.split("-") + leng = len(gpus_rmvpe) + ps = [] + for idx, n_g in enumerate(gpus_rmvpe): + cmd = ( + '"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s ' + % ( + config.python_cmd, + leng, + idx, + n_g, + now_dir, + exp_dir, + config.is_half, + ) + ) + logger.info(cmd) + p = Popen( + cmd, shell=True, cwd=now_dir + ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir + ps.append(p) + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + done = [False] + threading.Thread( + target=if_done_multi, # + args=( + done, + ps, + ), + ).start() + else: + cmd = ( + config.python_cmd + + ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" ' + % ( + now_dir, + exp_dir, + ) + ) + logger.info(cmd) + p = Popen( + cmd, shell=True, cwd=now_dir + ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir + p.wait() + done = [True] + while 1: + with open( + "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" + ) as f: + yield (f.read()) + sleep(1) + if done[0]: + break + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: + log = f.read() + logger.info(log) + yield log + ####对不同part分别开多进程 + """ + n_part=int(sys.argv[1]) + i_part=int(sys.argv[2]) + i_gpu=sys.argv[3] + exp_dir=sys.argv[4] + os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) + """ + leng = len(gpus) + ps = [] + for idx, n_g in enumerate(gpus): + cmd = ( + '"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s' + % ( + config.python_cmd, + config.device, + leng, + idx, + n_g, + now_dir, + exp_dir, + version19, + ) + ) + logger.info(cmd) + p = Popen( + cmd, shell=True, cwd=now_dir + ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir + ps.append(p) + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + done = [False] + threading.Thread( + target=if_done_multi, + args=( + done, + ps, + ), + ).start() + while 1: + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: + yield (f.read()) + sleep(1) + if done[0]: + break + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: + log = f.read() + logger.info(log) + yield log + +def get_pretrained_models(path_str, f0_str, sr2): + if_pretrained_generator_exist = os.access( + "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK + ) + if_pretrained_discriminator_exist = os.access( + "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK + ) + if not if_pretrained_generator_exist: + logger.warn( + "assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model", + path_str, + f0_str, + sr2, + ) + if not if_pretrained_discriminator_exist: + logger.warn( + "assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model", + path_str, + f0_str, + sr2, + ) + return ( + "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) + if if_pretrained_generator_exist + else "", + "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) + if if_pretrained_discriminator_exist + else "", + ) + +def change_sr2(sr2, if_f0_3, version19): + path_str = "" if version19 == "v1" else "_v2" + f0_str = "f0" if if_f0_3 else "" + return get_pretrained_models(path_str, f0_str, sr2) + + +def change_version19(sr2, if_f0_3, version19): + path_str = "" if version19 == "v1" else "_v2" + if sr2 == "32k" and version19 == "v1": + sr2 = "40k" + to_return_sr2 = ( + {"choices": ["40k", "48k"], "__type__": "update", "value": sr2} + if version19 == "v1" + else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2} + ) + f0_str = "f0" if if_f0_3 else "" + return ( + *get_pretrained_models(path_str, f0_str, sr2), + to_return_sr2, + ) + + +def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15 + path_str = "" if version19 == "v1" else "_v2" + return ( + {"visible": if_f0_3, "__type__": "update"}, + *get_pretrained_models(path_str, "f0", sr2), + ) + + +global log_interval + +def set_log_interval(exp_dir, batch_size12): + log_interval = 1 + folder_path = os.path.join(exp_dir, "1_16k_wavs") + + if os.path.isdir(folder_path): + wav_files_num = len(glob1(folder_path,"*.wav")) + + if wav_files_num > 0: + log_interval = math.ceil(wav_files_num / batch_size12) + if log_interval > 1: + log_interval += 1 + + return log_interval + +global PID, PROCESS + +def click_train( + exp_dir1, + sr2, + if_f0_3, + spk_id5, + save_epoch10, + total_epoch11, + batch_size12, + if_save_latest13, + pretrained_G14, + pretrained_D15, + gpus16, + if_cache_gpu17, + if_save_every_weights18, + version19, +): + CSVutil("csvdb/stop.csv", "w+", "formanting", False) + # 生成filelist + exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) + os.makedirs(exp_dir, exist_ok=True) + gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) + feature_dir = ( + "%s/3_feature256" % (exp_dir) + if version19 == "v1" + else "%s/3_feature768" % (exp_dir) + ) + if if_f0_3: + f0_dir = "%s/2a_f0" % (exp_dir) + f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) + names = ( + set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) + & set([name.split(".")[0] for name in os.listdir(feature_dir)]) + & set([name.split(".")[0] for name in os.listdir(f0_dir)]) + & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) + ) + else: + names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( + [name.split(".")[0] for name in os.listdir(feature_dir)] + ) + opt = [] + for name in names: + if if_f0_3: + opt.append( + "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" + % ( + gt_wavs_dir.replace("\\", "\\\\"), + name, + feature_dir.replace("\\", "\\\\"), + name, + f0_dir.replace("\\", "\\\\"), + name, + f0nsf_dir.replace("\\", "\\\\"), + name, + spk_id5, + ) + ) + else: + opt.append( + "%s/%s.wav|%s/%s.npy|%s" + % ( + gt_wavs_dir.replace("\\", "\\\\"), + name, + feature_dir.replace("\\", "\\\\"), + name, + spk_id5, + ) + ) + fea_dim = 256 if version19 == "v1" else 768 + if if_f0_3: + for _ in range(2): + opt.append( + "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" + % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) + ) + else: + for _ in range(2): + opt.append( + "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" + % (now_dir, sr2, now_dir, fea_dim, spk_id5) + ) + shuffle(opt) + with open("%s/filelist.txt" % exp_dir, "w") as f: + f.write("\n".join(opt)) + logger.debug("Write filelist done") + # 生成config#无需生成config + # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" + logger.info("Use gpus: %s", str(gpus16)) + if pretrained_G14 == "": + logger.info("No pretrained Generator") + if pretrained_D15 == "": + logger.info("No pretrained Discriminator") + if version19 == "v1" or sr2 == "40k": + config_path = "v1/%s.json" % sr2 + else: + config_path = "v2/%s.json" % sr2 + config_save_path = os.path.join(exp_dir, "config.json") + if not pathlib.Path(config_save_path).exists(): + with open(config_save_path, "w", encoding="utf-8") as f: + json.dump( + config.json_config[config_path], + f, + ensure_ascii=False, + indent=4, + sort_keys=True, + ) + f.write("\n") + if gpus16: + cmd = ( + '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' + % ( + config.python_cmd, + exp_dir1, + sr2, + 1 if if_f0_3 else 0, + batch_size12, + gpus16, + total_epoch11, + save_epoch10, + "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", + "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", + 1 if if_save_latest13 == True else 0, + 1 if if_cache_gpu17 == True else 0, + 1 if if_save_every_weights18 == True else 0, + version19, + ) + ) + else: + cmd = ( + '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' + % ( + config.python_cmd, + exp_dir1, + sr2, + 1 if if_f0_3 else 0, + batch_size12, + total_epoch11, + save_epoch10, + "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", + "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", + 1 if if_save_latest13 == True else 0, + 1 if if_cache_gpu17 == True else 0, + 1 if if_save_every_weights18 == True else 0, + version19, + ) + ) + logger.info(cmd) + global p + p = Popen(cmd, shell=True, cwd=now_dir) + global PID + PID = p.pid + + p.wait() + + return i18n("Training is done, check train.log"), {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"} + + +def train_index(exp_dir1, version19): + # exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) + exp_dir = "logs/%s" % (exp_dir1) + os.makedirs(exp_dir, exist_ok=True) + feature_dir = ( + "%s/3_feature256" % (exp_dir) + if version19 == "v1" + else "%s/3_feature768" % (exp_dir) + ) + if not os.path.exists(feature_dir): + return "请先进行特征提取!" + listdir_res = list(os.listdir(feature_dir)) + if len(listdir_res) == 0: + return "请先进行特征提取!" + infos = [] + npys = [] + for name in sorted(listdir_res): + phone = np.load("%s/%s" % (feature_dir, name)) + npys.append(phone) + big_npy = np.concatenate(npys, 0) + big_npy_idx = np.arange(big_npy.shape[0]) + np.random.shuffle(big_npy_idx) + big_npy = big_npy[big_npy_idx] + if big_npy.shape[0] > 2e5: + infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]) + yield "\n".join(infos) + try: + big_npy = ( + MiniBatchKMeans( + n_clusters=10000, + verbose=True, + batch_size=256 * config.n_cpu, + compute_labels=False, + init="random", + ) + .fit(big_npy) + .cluster_centers_ + ) + except: + info = traceback.format_exc() + logger.info(info) + infos.append(info) + yield "\n".join(infos) + + np.save("%s/total_fea.npy" % exp_dir, big_npy) + n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) + infos.append("%s,%s" % (big_npy.shape, n_ivf)) + yield "\n".join(infos) + index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) + # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf) + infos.append("training") + yield "\n".join(infos) + index_ivf = faiss.extract_index_ivf(index) # + index_ivf.nprobe = 1 + index.train(big_npy) + faiss.write_index( + index, + "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" + % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), + ) + + infos.append("adding") + yield "\n".join(infos) + batch_size_add = 8192 + for i in range(0, big_npy.shape[0], batch_size_add): + index.add(big_npy[i : i + batch_size_add]) + faiss.write_index( + index, + "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" + % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), + ) + infos.append( + "Successful Index Construction,added_IVF%s_Flat_nprobe_%s_%s_%s.index" + % (n_ivf, index_ivf.nprobe, exp_dir1, version19) + ) + # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) + # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19)) + yield "\n".join(infos) + +def change_info_(ckpt_path): + if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): + return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} + try: + with open( + ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" + ) as f: + info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) + sr, f0 = info["sample_rate"], info["if_f0"] + version = "v2" if ("version" in info and info["version"] == "v2") else "v1" + return sr, str(f0), version + except: + traceback.print_exc() + return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} + +F0GPUVisible = config.dml == False + + +def change_f0_method(f0method8): + if f0method8 == "rmvpe_gpu": + visible = F0GPUVisible + else: + visible = False + return {"visible": visible, "__type__": "update"} + + + +def export_onnx(model_path, exported_path): + device = torch.device("cpu") + checkpoint = torch.load(model_path, map_location=device) + vec_channels = 256 if checkpoint.get("version", "v1") == "v1" else 768 + + test_inputs = { + "phone": torch.rand(1, 200, vec_channels), + "phone_lengths": torch.LongTensor([200]), + "pitch": torch.randint(5, 255, (1, 200)), + "pitchf": torch.rand(1, 200), + "ds": torch.zeros(1).long(), + "rnd": torch.rand(1, 192, 200) + } + + checkpoint["config"][-3] = checkpoint["weight"]["emb_g.weight"].shape[0] + net_g = SynthesizerTrnMsNSFsidM(*checkpoint["config"], is_half=False, version=checkpoint.get("version", "v1")) + + net_g.load_state_dict(checkpoint["weight"], strict=False) + net_g = net_g.to(device) + + dynamic_axes = {"phone": [1], "pitch": [1], "pitchf": [1], "rnd": [2]} + + torch.onnx.export( + net_g, + tuple(value.to(device) for value in test_inputs.values()), + exported_path, + dynamic_axes=dynamic_axes, + do_constant_folding=False, + opset_version=13, + verbose=False, + input_names=list(test_inputs.keys()), + output_names=["audio"], + ) + return "Finished" + + + +import re as regex +import scipy.io.wavfile as wavfile + +cli_current_page = "HOME" + + +def cli_split_command(com): + exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)' + split_array = regex.findall(exp, com) + split_array = [group[0] if group[0] else group[1] for group in split_array] + return split_array + + +def execute_generator_function(genObject): + for _ in genObject: + pass + + +def cli_infer(com): + # get VC first + com = cli_split_command(com) + model_name = com[0] + source_audio_path = com[1] + output_file_name = com[2] + feature_index_path = com[3] + f0_file = None # Not Implemented Yet + + # Get parameters for inference + speaker_id = int(com[4]) + transposition = float(com[5]) + f0_method = com[6] + crepe_hop_length = int(com[7]) + harvest_median_filter = int(com[8]) + resample = int(com[9]) + mix = float(com[10]) + feature_ratio = float(com[11]) + protection_amnt = float(com[12]) + protect1 = 0.5 + + if com[14] == "False" or com[14] == "false": + DoFormant = False + Quefrency = 0.0 + Timbre = 0.0 + CSVutil( + "csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre + ) + + else: + DoFormant = True + Quefrency = float(com[15]) + Timbre = float(com[16]) + CSVutil( + "csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre + ) + + print("Mangio-RVC-Fork Infer-CLI: Starting the inference...") + vc_data = vc.get_vc(model_name, protection_amnt, protect1) + print(vc_data) + print("Mangio-RVC-Fork Infer-CLI: Performing inference...") + conversion_data = vc.vc_single( + speaker_id, + source_audio_path, + source_audio_path, + transposition, + f0_file, + f0_method, + feature_index_path, + feature_index_path, + feature_ratio, + harvest_median_filter, + resample, + mix, + protection_amnt, + crepe_hop_length, + ) + if "Success." in conversion_data[0]: + print( + "Mangio-RVC-Fork Infer-CLI: Inference succeeded. Writing to %s/%s..." + % ("audio-outputs", output_file_name) + ) + wavfile.write( + "%s/%s" % ("audio-outputs", output_file_name), + conversion_data[1][0], + conversion_data[1][1], + ) + print( + "Mangio-RVC-Fork Infer-CLI: Finished! Saved output to %s/%s" + % ("audio-outputs", output_file_name) + ) + else: + print("Mangio-RVC-Fork Infer-CLI: Inference failed. Here's the traceback: ") + print(conversion_data[0]) + + +def cli_pre_process(com): + com = cli_split_command(com) + model_name = com[0] + trainset_directory = com[1] + sample_rate = com[2] + num_processes = int(com[3]) + + print("Mangio-RVC-Fork Pre-process: Starting...") + generator = preprocess_dataset( + trainset_directory, model_name, sample_rate, num_processes + ) + execute_generator_function(generator) + print("Mangio-RVC-Fork Pre-process: Finished") + + +def cli_extract_feature(com): + com = cli_split_command(com) + model_name = com[0] + gpus = com[1] + num_processes = int(com[2]) + has_pitch_guidance = True if (int(com[3]) == 1) else False + f0_method = com[4] + crepe_hop_length = int(com[5]) + version = com[6] # v1 or v2 + + print("Mangio-RVC-CLI: Extract Feature Has Pitch: " + str(has_pitch_guidance)) + print("Mangio-RVC-CLI: Extract Feature Version: " + str(version)) + print("Mangio-RVC-Fork Feature Extraction: Starting...") + generator = extract_f0_feature( + gpus, + num_processes, + f0_method, + has_pitch_guidance, + model_name, + version, + crepe_hop_length, + ) + execute_generator_function(generator) + print("Mangio-RVC-Fork Feature Extraction: Finished") + + +def cli_train(com): + com = cli_split_command(com) + model_name = com[0] + sample_rate = com[1] + has_pitch_guidance = True if (int(com[2]) == 1) else False + speaker_id = int(com[3]) + save_epoch_iteration = int(com[4]) + total_epoch = int(com[5]) # 10000 + batch_size = int(com[6]) + gpu_card_slot_numbers = com[7] + if_save_latest = True if (int(com[8]) == 1) else False + if_cache_gpu = True if (int(com[9]) == 1) else False + if_save_every_weight = True if (int(com[10]) == 1) else False + version = com[11] + + pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/" + + g_pretrained_path = "%sf0G%s.pth" % (pretrained_base, sample_rate) + d_pretrained_path = "%sf0D%s.pth" % (pretrained_base, sample_rate) + + print("Mangio-RVC-Fork Train-CLI: Training...") + click_train( + model_name, + sample_rate, + has_pitch_guidance, + speaker_id, + save_epoch_iteration, + total_epoch, + batch_size, + if_save_latest, + g_pretrained_path, + d_pretrained_path, + gpu_card_slot_numbers, + if_cache_gpu, + if_save_every_weight, + version, + ) + + +def cli_train_feature(com): + com = cli_split_command(com) + model_name = com[0] + version = com[1] + print("Mangio-RVC-Fork Train Feature Index-CLI: Training... Please wait") + generator = train_index(model_name, version) + execute_generator_function(generator) + print("Mangio-RVC-Fork Train Feature Index-CLI: Done!") + + +def cli_extract_model(com): + com = cli_split_command(com) + model_path = com[0] + save_name = com[1] + sample_rate = com[2] + has_pitch_guidance = com[3] + info = com[4] + version = com[5] + extract_small_model_process = extract_small_model( + model_path, save_name, sample_rate, has_pitch_guidance, info, version + ) + if extract_small_model_process == "Success.": + print("Mangio-RVC-Fork Extract Small Model: Success!") + else: + print(str(extract_small_model_process)) + print("Mangio-RVC-Fork Extract Small Model: Failed!") + + +def preset_apply(preset, qfer, tmbr): + if str(preset) != "": + with open(str(preset), "r") as p: + content = p.readlines() + qfer, tmbr = content[0].split("\n")[0], content[1] + formant_apply(qfer, tmbr) + else: + pass + return ( + {"value": qfer, "__type__": "update"}, + {"value": tmbr, "__type__": "update"}, + ) + + +def print_page_details(): + if cli_current_page == "HOME": + print( + "\n go home : Takes you back to home with a navigation list." + "\n go infer : Takes you to inference command execution." + "\n go pre-process : Takes you to training step.1) pre-process command execution." + "\n go extract-feature : Takes you to training step.2) extract-feature command execution." + "\n go train : Takes you to training step.3) being or continue training command execution." + "\n go train-feature : Takes you to the train feature index command execution." + "\n go extract-model : Takes you to the extract small model command execution." + ) + elif cli_current_page == "INFER": + print( + "\n arg 1) model name with .pth in ./weights: mi-test.pth" + "\n arg 2) source audio path: myFolder\\MySource.wav" + "\n arg 3) output file name to be placed in './audio-outputs': MyTest.wav" + "\n arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index" + "\n arg 5) speaker id: 0" + "\n arg 6) transposition: 0" + "\n arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny, rmvpe)" + "\n arg 8) crepe hop length: 160" + "\n arg 9) harvest median filter radius: 3 (0-7)" + "\n arg 10) post resample rate: 0" + "\n arg 11) mix volume envelope: 1" + "\n arg 12) feature index ratio: 0.78 (0-1)" + "\n arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.)" + "\n arg 14) Whether to formant shift the inference audio before conversion: False (if set to false, you can ignore setting the quefrency and timbre values for formanting)" + "\n arg 15)* Quefrency for formanting: 8.0 (no need to set if arg14 is False/false)" + "\n arg 16)* Timbre for formanting: 1.2 (no need to set if arg14 is False/false) \n" + "\nExample: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33 0.45 True 8.0 1.2" + ) + elif cli_current_page == "PRE-PROCESS": + print( + "\n arg 1) Model folder name in ./logs: mi-test" + "\n arg 2) Trainset directory: mydataset (or) E:\\my-data-set" + "\n arg 3) Sample rate: 40k (32k, 40k, 48k)" + "\n arg 4) Number of CPU threads to use: 8 \n" + "\nExample: mi-test mydataset 40k 24" + ) + elif cli_current_page == "EXTRACT-FEATURE": + print( + "\n arg 1) Model folder name in ./logs: mi-test" + "\n arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)" + "\n arg 3) Number of CPU threads to use: 8" + "\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)" + "\n arg 5) f0 Method: harvest (pm, harvest, dio, crepe)" + "\n arg 6) Crepe hop length: 128" + "\n arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n" + "\nExample: mi-test 0 24 1 harvest 128 v2" + ) + elif cli_current_page == "TRAIN": + print( + "\n arg 1) Model folder name in ./logs: mi-test" + "\n arg 2) Sample rate: 40k (32k, 40k, 48k)" + "\n arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)" + "\n arg 4) speaker id: 0" + "\n arg 5) Save epoch iteration: 50" + "\n arg 6) Total epochs: 10000" + "\n arg 7) Batch size: 8" + "\n arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)" + "\n arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)" + "\n arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)" + "\n arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)" + "\n arg 12) Model architecture version: v2 (use either v1 or v2)\n" + "\nExample: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2" + ) + elif cli_current_page == "TRAIN-FEATURE": + print( + "\n arg 1) Model folder name in ./logs: mi-test" + "\n arg 2) Model architecture version: v2 (use either v1 or v2)\n" + "\nExample: mi-test v2" + ) + elif cli_current_page == "EXTRACT-MODEL": + print( + "\n arg 1) Model Path: logs/mi-test/G_168000.pth" + "\n arg 2) Model save name: MyModel" + "\n arg 3) Sample rate: 40k (32k, 40k, 48k)" + "\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)" + '\n arg 5) Model information: "My Model"' + "\n arg 6) Model architecture version: v2 (use either v1 or v2)\n" + '\nExample: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2' + ) + +def change_page(page): + global cli_current_page + cli_current_page = page + return 0 + +def execute_command(com): + if com == "go home": + return change_page("HOME") + elif com == "go infer": + return change_page("INFER") + elif com == "go pre-process": + return change_page("PRE-PROCESS") + elif com == "go extract-feature": + return change_page("EXTRACT-FEATURE") + elif com == "go train": + return change_page("TRAIN") + elif com == "go train-feature": + return change_page("TRAIN-FEATURE") + elif com == "go extract-model": + return change_page("EXTRACT-MODEL") + else: + if com[:3] == "go ": + print("page '%s' does not exist!" % com[3:]) + return 0 + + if cli_current_page == "INFER": + cli_infer(com) + elif cli_current_page == "PRE-PROCESS": + cli_pre_process(com) + elif cli_current_page == "EXTRACT-FEATURE": + cli_extract_feature(com) + elif cli_current_page == "TRAIN": + cli_train(com) + elif cli_current_page == "TRAIN-FEATURE": + cli_train_feature(com) + elif cli_current_page == "EXTRACT-MODEL": + cli_extract_model(com) + +def cli_navigation_loop(): + while True: + print("\nYou are currently in '%s':" % cli_current_page) + print_page_details() + command = input("%s: " % cli_current_page) + try: + execute_command(command) + except: + print(traceback.format_exc()) + + +if config.is_cli: + print("\n\nMangio-RVC-Fork v2 CLI App!\n") + print( + "Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n" + ) + cli_navigation_loop() + + + + + +def switch_pitch_controls(f0method0): + is_visible = f0method0 != 'rmvpe' + + if rvc_globals.NotesOrHertz: + return ( + {"visible": False, "__type__": "update"}, + {"visible": is_visible, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": is_visible, "__type__": "update"} + ) + else: + return ( + {"visible": is_visible, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + {"visible": is_visible, "__type__": "update"}, + {"visible": False, "__type__": "update"} + ) + +def match_index(sid0): + picked = False + # folder = sid0.split('.')[0] + + # folder = re.split(r'. |_', sid0)[0] + folder = sid0.split(".")[0].split("_")[0] + # folder_test = sid0.split('.')[0].split('_')[0].split('-')[0] + parent_dir = "./logs/" + folder + # print(parent_dir) + if os.path.exists(parent_dir): + # print('path exists') + for filename in os.listdir(parent_dir.replace("\\", "/")): + if filename.endswith(".index"): + for i in range(len(indexes_list)): + if indexes_list[i] == ( + os.path.join(("./logs/" + folder), filename).replace("\\", "/") + ): + # print('regular index found') + break + else: + if indexes_list[i] == ( + os.path.join( + ("./logs/" + folder.lower()), filename + ).replace("\\", "/") + ): + # print('lowered index found') + parent_dir = "./logs/" + folder.lower() + break + # elif (indexes_list[i]).casefold() == ((os.path.join(("./logs/" + folder), filename).replace('\\','/')).casefold()): + # print('8') + # parent_dir = "./logs/" + folder.casefold() + # break + # elif (indexes_list[i]) == ((os.path.join(("./logs/" + folder_test), filename).replace('\\','/'))): + # parent_dir = "./logs/" + folder_test + # print(parent_dir) + # break + # elif (indexes_list[i]) == (os.path.join(("./logs/" + folder_test.lower()), filename).replace('\\','/')): + # parent_dir = "./logs/" + folder_test + # print(parent_dir) + # break + # else: + # #print('couldnt find index') + # continue + + # print('all done') + index_path = os.path.join( + parent_dir.replace("\\", "/"), filename.replace("\\", "/") + ).replace("\\", "/") + # print(index_path) + return (index_path, index_path) + + else: + # print('nothing found') + return ("", "") + +def stoptraining(mim): + if int(mim) == 1: + CSVutil("csvdb/stop.csv", "w+", "stop", "True") + # p.terminate() + # p.kill() + try: + os.kill(PID, signal.SIGTERM) + except Exception as e: + print(f"Couldn't click due to {e}") + pass + else: + pass + + return ( + {"visible": False, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + ) + +weights_dir = 'weights/' + +def note_to_hz(note_name): + SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2} + pitch_class, octave = note_name[:-1], int(note_name[-1]) + semitone = SEMITONES[pitch_class] + note_number = 12 * (octave - 4) + semitone + frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number + return frequency + +def save_to_wav(record_button): + if record_button is None: + pass + else: + path_to_file=record_button + new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' + new_path='./audios/'+new_name + shutil.move(path_to_file,new_path) + return new_name +def save_to_wav2_edited(dropbox): + if dropbox is None: + pass + else: + file_path = dropbox.name + target_path = os.path.join('audios', os.path.basename(file_path)) + + if os.path.exists(target_path): + os.remove(target_path) + print('Replacing old dropdown file...') + + shutil.move(file_path, target_path) + return +def save_to_wav2(dropbox): + file_path = dropbox.name + target_path = os.path.join('audios', os.path.basename(file_path)) + + if os.path.exists(target_path): + os.remove(target_path) + print('Replacing old dropdown file...') + + shutil.move(file_path, target_path) + return target_path + +from gtts import gTTS +import edge_tts +import asyncio + + +def change_choices_fix(): + audio_paths=[] + for filename in os.listdir("./audios"): + if filename.endswith(('wav', 'mp3', 'flac', 'ogg', 'opus', + 'm4a', 'mp4', 'aac', 'alac', 'wma', + 'aiff', 'webm', 'ac3')): + audio_paths.append(os.path.join('./audios',filename).replace('\\', '/')) + print(audio_paths) + most_recent_audio = "" + if audio_paths: + most_recent_audio = max(audio_paths, key=os.path.getctime) + return {"choices": sorted(audio_paths), "value": most_recent_audio, "__type__": "update"} + + +def custom_voice( + _values, # filter indices + audio_files, # all audio files + model_voice_path='', + transpose=0, + f0method='pm', + index_rate_=float(0.66), + crepe_hop_length_=float(64), + f0_autotune=False, + file_index='', + file_index2='', + ): + + vc.get_vc(model_voice_path) + + + for _value_item in _values: + filename = "audio2/"+audio_files[_value_item] if _value_item != "converted_tts" else audio_files[0] + #filename = "audio2/"+audio_files[_value_item] + try: + print(audio_files[_value_item], model_voice_path) + except: + pass + info_, (sample_, audio_output_) = vc.vc_single_dont_save( + sid=0, + input_audio_path0=filename, #f"audio2/{filename}", + input_audio_path1=filename, #f"audio2/{filename}", + f0_up_key=transpose, # transpose for m to f and reverse 0 12 + f0_file=None, + f0_method= f0method, + file_index= file_index, # dir pwd? + file_index2= file_index2, + # file_big_npy1, + index_rate= index_rate_, + filter_radius= int(3), + resample_sr= int(0), + rms_mix_rate= float(0.25), + protect= float(0.33), + crepe_hop_length= crepe_hop_length_, + f0_autotune=f0_autotune, + f0_min=50, + note_min=50, + f0_max=1100, + note_max=1100 + ) + + sf.write( + file= filename, #f"audio2/{filename}", + samplerate=sample_, + data=audio_output_ + ) +def cast_to_device(tensor, device): + try: + return tensor.to(device) + except Exception as e: + print(e) + return tensor + + +def __bark__(text, voice_preset): + os.makedirs(os.path.join(now_dir,"tts"), exist_ok=True) + from transformers import AutoProcessor, BarkModel + device = "cuda:0" if torch.cuda.is_available() else "cpu" + dtype = torch.float32 if "cpu" in device else torch.float16 + bark_processor = AutoProcessor.from_pretrained( + "suno/bark-small", + cache_dir=os.path.join(now_dir,"tts","suno/bark"), + torch_dtype=dtype) + bark_model = BarkModel.from_pretrained( + "suno/bark-small", + cache_dir=os.path.join(now_dir,"tts","suno/bark"), + torch_dtype=dtype).to(device) + # bark_model.enable_cpu_offload() + inputs = bark_processor( + text=[text], + return_tensors="pt", + voice_preset=voice_preset + ) + tensor_dict = {k: cast_to_device(v,device) if hasattr(v,"to") else v for k, v in inputs.items()} + speech_values = bark_model.generate(**tensor_dict, do_sample=True) + sampling_rate = bark_model.generation_config.sample_rate + speech = speech_values.cpu().numpy().squeeze() + return speech, sampling_rate + + + +def make_test( + tts_text, + tts_voice, + model_path, + index_path, + transpose, + f0_method, + index_rate, + crepe_hop_length, + f0_autotune, + tts_method + ): + + if tts_voice == None: + return + + filename = os.path.join(now_dir, "audio-outputs", "converted_tts.wav") + if "SET_LIMIT" == os.getenv("DEMO"): + if len(tts_text) > 60: + tts_text = tts_text[:60] + print("DEMO; limit to 60 characters") + + language = tts_voice[:2] + if tts_method == "Edge-tts": + try: + #nest_asyncio.apply() # gradio;not + asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename)) + except: + try: + tts = gTTS(tts_text, lang=language) + tts.save(filename) + tts.save + print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.') + except: + tts = gTTS('a', lang=language) + tts.save(filename) + print('Error: Audio will be replaced.') + + os.system("cp audio-outputs/converted_tts.wav audio-outputs/real_tts.wav") + + custom_voice( + ["converted_tts"], # filter indices + ["audio-outputs/converted_tts.wav"], # all audio files + model_voice_path=model_path, + transpose=transpose, + f0method=f0_method, + index_rate_=index_rate, + crepe_hop_length_=crepe_hop_length, + f0_autotune=f0_autotune, + file_index='', + file_index2=index_path, + ) + return os.path.join(now_dir, "audio-outputs", "converted_tts.wav"), os.path.join(now_dir, "audio-outputs", "real_tts.wav") + elif tts_method == "Bark-tts": + try: + + script = tts_text.replace("\n", " ").strip() + sentences = sent_tokenize(script) + print(sentences) + silence = np.zeros(int(0.25 * SAMPLE_RATE)) + pieces = [] + nombre_archivo = os.path.join(now_dir, "audio-outputs", "bark_out.wav") + for sentence in sentences: + audio_array , _ = __bark__(sentence, tts_voice.split("-")[0]) + pieces += [audio_array, silence.copy()] + + sf.write( + file= nombre_archivo, + samplerate=SAMPLE_RATE, + data=np.concatenate(pieces) + ) + vc.get_vc(model_path) + info_, (sample_, audio_output_) = vc.vc_single_dont_save( + sid=0, + input_audio_path0=os.path.join(now_dir, "audio-outputs", "bark_out.wav"), #f"audio2/{filename}", + input_audio_path1=os.path.join(now_dir, "audio-outputs", "bark_out.wav"), #f"audio2/{filename}", + f0_up_key=transpose, # transpose for m to f and reverse 0 12 + f0_file=None, + f0_method=f0_method, + file_index= '', # dir pwd? + file_index2= index_path, + # file_big_npy1, + index_rate= index_rate, + filter_radius= int(3), + resample_sr= int(0), + rms_mix_rate= float(0.25), + protect= float(0.33), + crepe_hop_length= crepe_hop_length, + f0_autotune=f0_autotune, + f0_min=50, + note_min=50, + f0_max=1100, + note_max=1100 + ) + wavfile.write(os.path.join(now_dir, "audio-outputs", "converted_bark.wav"), rate=sample_, data=audio_output_) + return os.path.join(now_dir, "audio-outputs", "converted_bark.wav"), nombre_archivo + + except Exception as e: + print(f"{e}") + return None, None + + + + + + +def GradioSetup(UTheme=gr.themes.Soft()): + + default_weight = names[0] if names else '' + + with gr.Blocks(theme='JohnSmith9982/small_and_pretty', title="Applio") as app: + #gr.Markdown("🍏 Applio (Mangio-RVC-Fork HF)") + #gr.Markdown("More spaces: [RVC⚡ZERO](https://huggingface.co/spaces/r3gm/rvc_zero), [Aesthetic_RVC_Inference_HF](https://huggingface.co/spaces/r3gm/Aesthetic_RVC_Inference_HF), [AICoverGen](https://huggingface.co/spaces/r3gm/AICoverGen), [Ultimate-Vocal-Remover-WebUI](https://huggingface.co/spaces/r3gm/Ultimate-Vocal-Remover-WebUI), [Advanced-RVC-Inference](https://huggingface.co/spaces/r3gm/Advanced-RVC-Inference)") + gr.HTML("