File size: 1,971 Bytes
90c07f0
 
 
 
 
 
9c2d40e
 
90c07f0
 
 
 
9c2d40e
90c07f0
 
 
 
 
 
 
 
 
 
9c2d40e
90c07f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c2d40e
90c07f0
 
 
 
 
9c2d40e
90c07f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import json
import os
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import already_submitted_models


REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None


def add_new_eval(
    model: str,
    revision: str,
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = ""
    model_name = model

    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Seems good, creating the eval
    print("Adding new eval")

    eval_entry = {
        "model": model,
        "revision": revision,
        "status": "PENDING",
        "submitted_time": current_time,
        "private": False,
    }

    # Check for duplicate submission
    if f"{model}_{revision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_name}_eval_request_False_{precision}_{weight_type}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )