Spaces:
Running
Running
setup leaderboard
Browse files- README.md +4 -4
- app.py +78 -116
- new/app.py +270 -0
- new/requirements.txt +17 -0
- new/src/css_html_js.py +101 -0
- new/src/envs.py +38 -0
- new/src/texts.py +37 -0
- src/about.py +18 -30
- src/display/utils.py +8 -72
- src/leaderboard/read_evals.py +11 -65
- src/submission/submit.py +3 -3
README.md
CHANGED
@@ -17,9 +17,9 @@ Results files should have the following format and be stored as json files:
|
|
17 |
```json
|
18 |
{
|
19 |
"config": {
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
},
|
24 |
"results": {
|
25 |
"task_name": {
|
@@ -41,4 +41,4 @@ If you encounter problem on the space, don't hesitate to restart it to remove th
|
|
41 |
You'll find
|
42 |
- the main table' columns names and properties in `src/display/utils.py`
|
43 |
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
44 |
-
-
|
|
|
17 |
```json
|
18 |
{
|
19 |
"config": {
|
20 |
+
"model_name": "name of the model",
|
21 |
+
"model_url": "url of the model",
|
22 |
+
"tags": ["tag1", "tag2"], // e.g. ["flow", "diffusion", "autoregressive", "end-to-end"]
|
23 |
},
|
24 |
"results": {
|
25 |
"task_name": {
|
|
|
41 |
You'll find
|
42 |
- the main table' columns names and properties in `src/display/utils.py`
|
43 |
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
44 |
+
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
app.py
CHANGED
@@ -19,10 +19,7 @@ from src.display.utils import (
|
|
19 |
EVAL_COLS,
|
20 |
EVAL_TYPES,
|
21 |
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision,
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -80,11 +77,9 @@ def init_leaderboard(dataframe):
|
|
80 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
81 |
label="Select Columns to Display:",
|
82 |
),
|
83 |
-
search_columns=[AutoEvalColumn.model.name
|
84 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
85 |
filter_columns=[
|
86 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
87 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
88 |
ColumnFilter(
|
89 |
AutoEvalColumn.params.name,
|
90 |
type="slider",
|
@@ -92,7 +87,6 @@ def init_leaderboard(dataframe):
|
|
92 |
max=150,
|
93 |
label="Select the number of parameters (B)",
|
94 |
),
|
95 |
-
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
96 |
],
|
97 |
bool_checkboxgroup_label="Hide models",
|
98 |
interactive=False,
|
@@ -100,129 +94,97 @@ def init_leaderboard(dataframe):
|
|
100 |
|
101 |
|
102 |
def show_leaderboard(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None):
|
103 |
-
global demo
|
104 |
-
|
105 |
if profile or True:
|
106 |
-
|
107 |
-
|
108 |
-
gr.HTML(TITLE)
|
109 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
with gr.Row():
|
121 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
122 |
-
|
123 |
-
with gr.Column():
|
124 |
-
with gr.Accordion(
|
125 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
126 |
-
open=False,
|
127 |
-
):
|
128 |
-
with gr.Row():
|
129 |
-
finished_eval_table = gr.components.Dataframe(
|
130 |
-
value=finished_eval_queue_df,
|
131 |
-
headers=EVAL_COLS,
|
132 |
-
datatype=EVAL_TYPES,
|
133 |
-
row_count=5,
|
134 |
-
)
|
135 |
-
with gr.Accordion(
|
136 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
137 |
-
open=False,
|
138 |
-
):
|
139 |
-
with gr.Row():
|
140 |
-
running_eval_table = gr.components.Dataframe(
|
141 |
-
value=running_eval_queue_df,
|
142 |
-
headers=EVAL_COLS,
|
143 |
-
datatype=EVAL_TYPES,
|
144 |
-
row_count=5,
|
145 |
-
)
|
146 |
-
|
147 |
-
with gr.Accordion(
|
148 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
149 |
-
open=False,
|
150 |
-
):
|
151 |
-
with gr.Row():
|
152 |
-
pending_eval_table = gr.components.Dataframe(
|
153 |
-
value=pending_eval_queue_df,
|
154 |
-
headers=EVAL_COLS,
|
155 |
-
datatype=EVAL_TYPES,
|
156 |
-
row_count=5,
|
157 |
-
)
|
158 |
with gr.Row():
|
159 |
-
gr.Markdown(
|
160 |
|
161 |
-
with gr.
|
162 |
-
with gr.
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
with gr.
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
#
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
|
216 |
demo = gr.Blocks(css=custom_css)
|
217 |
|
218 |
with demo:
|
219 |
-
gr.LoginButton()
|
220 |
m1 = gr.Markdown("Please login to see the leaderboard.")
|
221 |
-
demo.load(show_leaderboard, inputs=None, outputs=m1)
|
|
|
222 |
|
223 |
|
224 |
scheduler = BackgroundScheduler()
|
225 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
226 |
scheduler.start()
|
227 |
-
|
228 |
-
demo.launch()
|
|
|
|
19 |
EVAL_COLS,
|
20 |
EVAL_TYPES,
|
21 |
AutoEvalColumn,
|
|
|
22 |
fields,
|
|
|
|
|
23 |
)
|
24 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
25 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
77 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
78 |
label="Select Columns to Display:",
|
79 |
),
|
80 |
+
search_columns=[AutoEvalColumn.model.name],
|
81 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
82 |
filter_columns=[
|
|
|
|
|
83 |
ColumnFilter(
|
84 |
AutoEvalColumn.params.name,
|
85 |
type="slider",
|
|
|
87 |
max=150,
|
88 |
label="Select the number of parameters (B)",
|
89 |
),
|
|
|
90 |
],
|
91 |
bool_checkboxgroup_label="Hide models",
|
92 |
interactive=False,
|
|
|
94 |
|
95 |
|
96 |
def show_leaderboard(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None):
|
|
|
|
|
97 |
if profile or True:
|
98 |
+
gr.HTML(TITLE)
|
99 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
|
100 |
|
101 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
102 |
+
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
103 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
104 |
|
105 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
106 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
107 |
|
108 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
109 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
with gr.Row():
|
111 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
112 |
|
113 |
+
with gr.Column():
|
114 |
+
with gr.Accordion(
|
115 |
+
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
116 |
+
open=False,
|
117 |
+
):
|
118 |
+
with gr.Row():
|
119 |
+
finished_eval_table = gr.components.Dataframe(
|
120 |
+
value=finished_eval_queue_df,
|
121 |
+
headers=EVAL_COLS,
|
122 |
+
datatype=EVAL_TYPES,
|
123 |
+
row_count=5,
|
124 |
+
)
|
125 |
+
with gr.Accordion(
|
126 |
+
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
127 |
+
open=False,
|
128 |
+
):
|
129 |
+
with gr.Row():
|
130 |
+
running_eval_table = gr.components.Dataframe(
|
131 |
+
value=running_eval_queue_df,
|
132 |
+
headers=EVAL_COLS,
|
133 |
+
datatype=EVAL_TYPES,
|
134 |
+
row_count=5,
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Accordion(
|
138 |
+
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
139 |
+
open=False,
|
140 |
+
):
|
141 |
+
with gr.Row():
|
142 |
+
pending_eval_table = gr.components.Dataframe(
|
143 |
+
value=pending_eval_queue_df,
|
144 |
+
headers=EVAL_COLS,
|
145 |
+
datatype=EVAL_TYPES,
|
146 |
+
row_count=5,
|
147 |
+
)
|
148 |
+
with gr.Row():
|
149 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
150 |
+
|
151 |
+
with gr.Row():
|
152 |
+
with gr.Column():
|
153 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
154 |
+
|
155 |
+
submit_button = gr.Button("Submit Eval")
|
156 |
+
submission_result = gr.Markdown()
|
157 |
+
submit_button.click(
|
158 |
+
add_new_eval,
|
159 |
+
[
|
160 |
+
model_name_textbox,
|
161 |
+
],
|
162 |
+
submission_result,
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Accordion("📙 Citation", open=False):
|
167 |
+
citation_button = gr.Textbox(
|
168 |
+
value=CITATION_BUTTON_TEXT,
|
169 |
+
label=CITATION_BUTTON_LABEL,
|
170 |
+
lines=20,
|
171 |
+
elem_id="citation-button",
|
172 |
+
show_copy_button=True,
|
173 |
+
)
|
174 |
|
175 |
|
176 |
demo = gr.Blocks(css=custom_css)
|
177 |
|
178 |
with demo:
|
179 |
+
# gr.LoginButton()
|
180 |
m1 = gr.Markdown("Please login to see the leaderboard.")
|
181 |
+
# demo.load(show_leaderboard, inputs=None, outputs=m1)
|
182 |
+
show_leaderboard(None, None)
|
183 |
|
184 |
|
185 |
scheduler = BackgroundScheduler()
|
186 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
187 |
scheduler.start()
|
188 |
+
|
189 |
+
demo.queue(default_concurrency_limit=40).launch()
|
190 |
+
# demo.launch()
|
new/app.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import json
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from gradio_leaderboard import Leaderboard, SelectColumns
|
7 |
+
import pandas as pd
|
8 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
+
from ttsdb.benchmarks.benchmark import BenchmarkCategory
|
10 |
+
from ttsdb import BenchmarkSuite
|
11 |
+
|
12 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, TAGS
|
13 |
+
from src.texts import LLM_BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT
|
14 |
+
from src.css_html_js import custom_css
|
15 |
+
|
16 |
+
|
17 |
+
def filter_dfs(tags, lb):
|
18 |
+
global f_b_df, f_a_df
|
19 |
+
is_agg = False
|
20 |
+
if "Environment" in lb.columns:
|
21 |
+
is_agg = True
|
22 |
+
if is_agg:
|
23 |
+
lb = f_a_df.copy()
|
24 |
+
else:
|
25 |
+
lb = f_b_df.copy()
|
26 |
+
if tags and len(lb) > 0:
|
27 |
+
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
|
28 |
+
return lb
|
29 |
+
|
30 |
+
|
31 |
+
def restart_space():
|
32 |
+
API.restart_space(repo_id=REPO_ID)
|
33 |
+
|
34 |
+
|
35 |
+
def submit_eval(model_name, model_tags, web_url, hf_url, code_url, paper_url, inference_details, file_path):
|
36 |
+
model_id = model_name.lower().replace(" ", "_")
|
37 |
+
# check if model already exists
|
38 |
+
if Path(f"{EVAL_REQUESTS_PATH}/{model_id}.json").exists():
|
39 |
+
return "Model already exists in the evaluation queue"
|
40 |
+
# check which urls are valid
|
41 |
+
if web_url and not web_url.startswith("http"):
|
42 |
+
return "Please enter a valid URL"
|
43 |
+
if hf_url and not hf_url.startswith("http"):
|
44 |
+
return "Please enter a valid URL"
|
45 |
+
if code_url and not code_url.startswith("http"):
|
46 |
+
return "Please enter a valid URL"
|
47 |
+
if paper_url and not paper_url.startswith("http"):
|
48 |
+
return "Please enter a valid URL"
|
49 |
+
# move file to correct location
|
50 |
+
if not file_path.endswith(".tar.gz"):
|
51 |
+
return "Please upload a .tar.gz file"
|
52 |
+
Path(file_path).rename(f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz")
|
53 |
+
# build display name - use web_url to link text if available, and emojis for the other urls
|
54 |
+
display_name = model_name
|
55 |
+
if web_url:
|
56 |
+
display_name = f"[{display_name}]({web_url}) "
|
57 |
+
if hf_url:
|
58 |
+
display_name += f"[🤗]({hf_url})"
|
59 |
+
if code_url:
|
60 |
+
display_name += f"[💻]({code_url})"
|
61 |
+
if paper_url:
|
62 |
+
display_name += f"[📄]({paper_url})"
|
63 |
+
request_obj = {
|
64 |
+
"model_name": model_name,
|
65 |
+
"display_name": display_name,
|
66 |
+
"model_tags": model_tags,
|
67 |
+
"web_url": web_url,
|
68 |
+
"hf_url": hf_url,
|
69 |
+
"code_url": code_url,
|
70 |
+
"paper_url": paper_url,
|
71 |
+
"inference_details": inference_details,
|
72 |
+
"status": "pending",
|
73 |
+
}
|
74 |
+
with open(f"{EVAL_REQUESTS_PATH}/{model_id}.json", "w") as f:
|
75 |
+
json.dump(request_obj, f)
|
76 |
+
API.upload_file(
|
77 |
+
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.json",
|
78 |
+
path_in_repo=f"{model_id}.json",
|
79 |
+
repo_id=QUEUE_REPO,
|
80 |
+
repo_type="dataset",
|
81 |
+
commit_message=f"Add {model_name} to evaluation queue",
|
82 |
+
)
|
83 |
+
API.upload_file(
|
84 |
+
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz",
|
85 |
+
path_in_repo=f"{model_id}.tar.gz",
|
86 |
+
repo_id=QUEUE_REPO,
|
87 |
+
repo_type="dataset",
|
88 |
+
commit_message=f"Add {model_name} to evaluation queue",
|
89 |
+
)
|
90 |
+
return "Model submitted successfully 🎉"
|
91 |
+
|
92 |
+
|
93 |
+
### Space initialisation
|
94 |
+
try:
|
95 |
+
print(EVAL_REQUESTS_PATH)
|
96 |
+
snapshot_download(
|
97 |
+
repo_id=QUEUE_REPO,
|
98 |
+
local_dir=EVAL_REQUESTS_PATH,
|
99 |
+
repo_type="dataset",
|
100 |
+
tqdm_class=None,
|
101 |
+
etag_timeout=30,
|
102 |
+
token=TOKEN,
|
103 |
+
)
|
104 |
+
except Exception:
|
105 |
+
restart_space()
|
106 |
+
try:
|
107 |
+
print(EVAL_RESULTS_PATH)
|
108 |
+
snapshot_download(
|
109 |
+
repo_id=RESULTS_REPO,
|
110 |
+
local_dir=EVAL_RESULTS_PATH,
|
111 |
+
repo_type="dataset",
|
112 |
+
tqdm_class=None,
|
113 |
+
etag_timeout=30,
|
114 |
+
token=TOKEN,
|
115 |
+
)
|
116 |
+
except Exception:
|
117 |
+
restart_space()
|
118 |
+
|
119 |
+
|
120 |
+
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")
|
121 |
+
|
122 |
+
agg_df = BenchmarkSuite.aggregate_df(results_df)
|
123 |
+
agg_df = agg_df.pivot(index="dataset", columns="benchmark_category", values="score")
|
124 |
+
agg_df.rename(columns={"OVERALL": "General"}, inplace=True)
|
125 |
+
agg_df.columns = [x.capitalize() for x in agg_df.columns]
|
126 |
+
agg_df["Mean"] = agg_df.mean(axis=1)
|
127 |
+
# make sure mean is the first column
|
128 |
+
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
|
129 |
+
for col in agg_df.columns:
|
130 |
+
agg_df[col] = agg_df[col].apply(lambda x: round(x, 2))
|
131 |
+
agg_df["Tags"] = ""
|
132 |
+
agg_df.reset_index(inplace=True)
|
133 |
+
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
|
134 |
+
agg_df.sort_values("Mean", ascending=False, inplace=True)
|
135 |
+
|
136 |
+
benchmark_df = results_df.pivot(index="dataset", columns="benchmark_name", values="score")
|
137 |
+
|
138 |
+
# get benchmark name order by category
|
139 |
+
benchmark_order = list(results_df.sort_values("benchmark_category")["benchmark_name"].unique())
|
140 |
+
benchmark_df = benchmark_df[benchmark_order]
|
141 |
+
benchmark_df = benchmark_df.reset_index()
|
142 |
+
benchmark_df.rename(columns={"dataset": "Model"}, inplace=True)
|
143 |
+
# set index
|
144 |
+
benchmark_df.set_index("Model", inplace=True)
|
145 |
+
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
|
146 |
+
# make sure mean is the first column
|
147 |
+
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
|
148 |
+
# round all
|
149 |
+
for col in benchmark_df.columns:
|
150 |
+
benchmark_df[col] = benchmark_df[col].apply(lambda x: round(x, 2))
|
151 |
+
benchmark_df["Tags"] = ""
|
152 |
+
benchmark_df.reset_index(inplace=True)
|
153 |
+
benchmark_df.sort_values("Mean", ascending=False, inplace=True)
|
154 |
+
|
155 |
+
# get details for each model
|
156 |
+
model_detail_files = Path(EVAL_REQUESTS_PATH).glob("*.json")
|
157 |
+
model_details = {}
|
158 |
+
for model_detail_file in model_detail_files:
|
159 |
+
with open(model_detail_file) as f:
|
160 |
+
model_detail = json.load(f)
|
161 |
+
model_details[model_detail_file.stem] = model_detail
|
162 |
+
|
163 |
+
# replace .tar.gz
|
164 |
+
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
|
165 |
+
agg_df["Model"] = agg_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
|
166 |
+
|
167 |
+
benchmark_df["Tags"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
|
168 |
+
agg_df["Tags"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
|
169 |
+
|
170 |
+
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
|
171 |
+
agg_df["Model"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
|
172 |
+
|
173 |
+
f_b_df = benchmark_df.copy()
|
174 |
+
f_a_df = agg_df.copy()
|
175 |
+
|
176 |
+
|
177 |
+
def init_leaderboard(dataframe):
|
178 |
+
if dataframe is None or dataframe.empty:
|
179 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
180 |
+
df_types = []
|
181 |
+
for col in dataframe.columns:
|
182 |
+
if col == "Model":
|
183 |
+
df_types.append("markdown")
|
184 |
+
elif col == "Tags":
|
185 |
+
df_types.append("markdown")
|
186 |
+
else:
|
187 |
+
df_types.append("number")
|
188 |
+
return Leaderboard(
|
189 |
+
value=dataframe,
|
190 |
+
select_columns=SelectColumns(
|
191 |
+
default_selection=list(dataframe.columns),
|
192 |
+
cant_deselect=["Model", "Mean"],
|
193 |
+
label="Select Columns to Display:",
|
194 |
+
),
|
195 |
+
search_columns=["Model", "Tags"],
|
196 |
+
filter_columns=[],
|
197 |
+
hide_columns=["Tags"],
|
198 |
+
interactive=False,
|
199 |
+
datatype=df_types,
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
app = gr.Blocks(css=custom_css, title="TTS Benchmark Leaderboard")
|
204 |
+
|
205 |
+
with app:
|
206 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
207 |
+
with gr.TabItem("🏅 TTSDB Scores", elem_id="llm-benchmark-tab-table", id=0):
|
208 |
+
tags = gr.Dropdown(
|
209 |
+
TAGS,
|
210 |
+
value=[],
|
211 |
+
multiselect=True,
|
212 |
+
label="Tags",
|
213 |
+
info="Select tags to filter the leaderboard. You can suggest new tags here: https://huggingface.co/spaces/ttsds/benchmark/discussions/1",
|
214 |
+
)
|
215 |
+
leaderboard = init_leaderboard(f_a_df)
|
216 |
+
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
|
217 |
+
with gr.TabItem("🏅 Individual Benchmarks", elem_id="llm-benchmark-tab-table", id=1):
|
218 |
+
tags = gr.Dropdown(
|
219 |
+
TAGS,
|
220 |
+
value=[],
|
221 |
+
multiselect=True,
|
222 |
+
label="Tags",
|
223 |
+
info="Select tags to filter the leaderboard",
|
224 |
+
)
|
225 |
+
leaderboard = init_leaderboard(f_b_df)
|
226 |
+
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
|
227 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
228 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
229 |
+
with gr.TabItem("🚀 Submit here!", elem_id="llm-benchmark-tab-table", id=3):
|
230 |
+
with gr.Column():
|
231 |
+
with gr.Row():
|
232 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
233 |
+
with gr.Row():
|
234 |
+
gr.Markdown("# ✉️✨ Submit a TTS dataset here!", elem_classes="markdown-text")
|
235 |
+
with gr.Row():
|
236 |
+
with gr.Column():
|
237 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
238 |
+
model_tags_dropdown = gr.Dropdown(
|
239 |
+
label="Model tags",
|
240 |
+
choices=TAGS,
|
241 |
+
multiselect=True,
|
242 |
+
)
|
243 |
+
website_url_textbox = gr.Textbox(label="Website URL (optional)")
|
244 |
+
hf_url_textbox = gr.Textbox(label="Huggingface URL (optional)")
|
245 |
+
code_url_textbox = gr.Textbox(label="Code URL (optional)")
|
246 |
+
paper_url_textbox = gr.Textbox(label="Paper URL (optional)")
|
247 |
+
inference_details_textbox = gr.TextArea(label="Inference details (optional)")
|
248 |
+
file_input = gr.File(file_types=[".gz"], interactive=True, label=".tar.gz TTS dataset")
|
249 |
+
submit_button = gr.Button("Submit Eval")
|
250 |
+
submission_result = gr.Markdown()
|
251 |
+
submit_button.click(
|
252 |
+
submit_eval,
|
253 |
+
[
|
254 |
+
model_name_textbox,
|
255 |
+
model_tags_dropdown,
|
256 |
+
website_url_textbox,
|
257 |
+
hf_url_textbox,
|
258 |
+
code_url_textbox,
|
259 |
+
paper_url_textbox,
|
260 |
+
inference_details_textbox,
|
261 |
+
file_input,
|
262 |
+
],
|
263 |
+
submission_result,
|
264 |
+
)
|
265 |
+
|
266 |
+
scheduler = BackgroundScheduler()
|
267 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
268 |
+
scheduler.start()
|
269 |
+
|
270 |
+
app.queue(default_concurrency_limit=40).launch()
|
new/requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler
|
2 |
+
black
|
3 |
+
datasets
|
4 |
+
gradio
|
5 |
+
gradio[oauth]
|
6 |
+
gradio_leaderboard==0.0.9
|
7 |
+
gradio_client
|
8 |
+
huggingface-hub>=0.18.0
|
9 |
+
matplotlib
|
10 |
+
numpy
|
11 |
+
pandas
|
12 |
+
python-dateutil
|
13 |
+
tqdm
|
14 |
+
transformers
|
15 |
+
tokenizers>=0.15.0
|
16 |
+
sentencepiece
|
17 |
+
markdown
|
new/src/css_html_js.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
|
3 |
+
.markdown-text {
|
4 |
+
font-size: 16px !important;
|
5 |
+
}
|
6 |
+
|
7 |
+
#models-to-add-text {
|
8 |
+
font-size: 18px !important;
|
9 |
+
}
|
10 |
+
|
11 |
+
#citation-button span {
|
12 |
+
font-size: 16px !important;
|
13 |
+
}
|
14 |
+
|
15 |
+
#citation-button textarea {
|
16 |
+
font-size: 16px !important;
|
17 |
+
}
|
18 |
+
|
19 |
+
#citation-button > label > button {
|
20 |
+
margin: 6px;
|
21 |
+
transform: scale(1.3);
|
22 |
+
}
|
23 |
+
|
24 |
+
#leaderboard-table {
|
25 |
+
margin-top: 15px
|
26 |
+
}
|
27 |
+
|
28 |
+
#leaderboard-table-lite {
|
29 |
+
margin-top: 15px
|
30 |
+
}
|
31 |
+
|
32 |
+
#search-bar-table-box > div:first-child {
|
33 |
+
background: none;
|
34 |
+
border: none;
|
35 |
+
}
|
36 |
+
|
37 |
+
#search-bar {
|
38 |
+
padding: 0px;
|
39 |
+
}
|
40 |
+
|
41 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
42 |
+
table td:first-child,
|
43 |
+
table th:first-child {
|
44 |
+
max-width: 400px;
|
45 |
+
overflow: auto;
|
46 |
+
white-space: nowrap;
|
47 |
+
}
|
48 |
+
|
49 |
+
.tab-buttons button {
|
50 |
+
font-size: 20px;
|
51 |
+
}
|
52 |
+
|
53 |
+
#scale-logo {
|
54 |
+
border-style: none !important;
|
55 |
+
box-shadow: none;
|
56 |
+
display: block;
|
57 |
+
margin-left: auto;
|
58 |
+
margin-right: auto;
|
59 |
+
max-width: 600px;
|
60 |
+
}
|
61 |
+
|
62 |
+
#scale-logo .download {
|
63 |
+
display: none;
|
64 |
+
}
|
65 |
+
#filter_type{
|
66 |
+
border: 0;
|
67 |
+
padding-left: 0;
|
68 |
+
padding-top: 0;
|
69 |
+
}
|
70 |
+
#filter_type label {
|
71 |
+
display: flex;
|
72 |
+
}
|
73 |
+
#filter_type label > span{
|
74 |
+
margin-top: var(--spacing-lg);
|
75 |
+
margin-right: 0.5em;
|
76 |
+
}
|
77 |
+
#filter_type label > .wrap{
|
78 |
+
width: 103px;
|
79 |
+
}
|
80 |
+
#filter_type label > .wrap .wrap-inner{
|
81 |
+
padding: 2px;
|
82 |
+
}
|
83 |
+
#filter_type label > .wrap .wrap-inner input{
|
84 |
+
width: 1px
|
85 |
+
}
|
86 |
+
#filter-columns-type{
|
87 |
+
border:0;
|
88 |
+
padding:0.5;
|
89 |
+
}
|
90 |
+
#filter-columns-size{
|
91 |
+
border:0;
|
92 |
+
padding:0.5;
|
93 |
+
}
|
94 |
+
#box-filter > .form{
|
95 |
+
border: 0
|
96 |
+
}
|
97 |
+
|
98 |
+
.svelte-1m1obck:nth-of-type(2) {
|
99 |
+
display: none !important;
|
100 |
+
}
|
101 |
+
"""
|
new/src/envs.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
+
|
9 |
+
OWNER = "ttsds" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
# ----------------------------------
|
11 |
+
|
12 |
+
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/results"
|
15 |
+
|
16 |
+
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
18 |
+
|
19 |
+
# Local caches
|
20 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
+
|
25 |
+
API = HfApi(token=TOKEN)
|
26 |
+
|
27 |
+
TAGS = [
|
28 |
+
"Normalizing Flow",
|
29 |
+
"Reference-based (Speaker)",
|
30 |
+
"Prompt-based (Speaker)",
|
31 |
+
"Prosodic Correlates",
|
32 |
+
"Adversarial",
|
33 |
+
"Diffusion",
|
34 |
+
"Audio Tokens",
|
35 |
+
"Autoregressive",
|
36 |
+
"Non-autoregressive",
|
37 |
+
"Pretrained Text Encoder",
|
38 |
+
]
|
new/src/texts.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LLM_BENCHMARKS_TEXT = f"""
|
2 |
+
## How it works
|
3 |
+
|
4 |
+
## Reproducibility
|
5 |
+
To reproduce our results, check out our repository [here](https://github.com/ttsds/ttsds).
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
EVALUATION_QUEUE_TEXT = """
|
10 |
+
## How to submit a TTS model to the leaderboard
|
11 |
+
|
12 |
+
### 1) download the evaluation dataset
|
13 |
+
The evaluation dataset consists of wav / text pairs.
|
14 |
+
You can download it [here](https://huggingface.co/ttsds/eval).
|
15 |
+
|
16 |
+
The format of the dataset is as follows:
|
17 |
+
```
|
18 |
+
eval/
|
19 |
+
├── 0001.wav
|
20 |
+
├── 0001.txt
|
21 |
+
├── 0002.wav
|
22 |
+
├── 0002.txt
|
23 |
+
├── ...
|
24 |
+
```
|
25 |
+
|
26 |
+
### 2) create your TTS dataset
|
27 |
+
Create a dataset with your TTS model and the evaluation dataset.
|
28 |
+
Use the wav files as speaker reference and the text as the prompt.
|
29 |
+
Create a .tar.gz file with the dataset, and make sure to inlcude .wav files and .txt files.
|
30 |
+
|
31 |
+
### 3) submit your TTS dataset
|
32 |
+
Submit your dataset below.
|
33 |
+
"""
|
34 |
+
|
35 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
36 |
+
CITATION_BUTTON_TEXT = r"""
|
37 |
+
"""
|
src/about.py
CHANGED
@@ -1,23 +1,25 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
|
|
4 |
@dataclass
|
5 |
class Task:
|
6 |
benchmark: str
|
7 |
metric: str
|
8 |
col_name: str
|
|
|
9 |
|
10 |
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
|
18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
-
# ---------------------------------------------------
|
20 |
|
|
|
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
@@ -33,38 +35,24 @@ LLM_BENCHMARKS_TEXT = f"""
|
|
33 |
## How it works
|
34 |
|
35 |
## Reproducibility
|
36 |
-
To reproduce our results,
|
37 |
|
38 |
"""
|
39 |
|
40 |
EVALUATION_QUEUE_TEXT = """
|
41 |
-
##
|
42 |
-
|
43 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
44 |
-
```python
|
45 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
46 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
47 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
49 |
-
```
|
50 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
51 |
-
|
52 |
-
Note: make sure your model is public!
|
53 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
54 |
-
|
55 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
56 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
57 |
|
58 |
-
###
|
59 |
-
|
|
|
60 |
|
61 |
-
###
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
Make sure you have followed the above steps first.
|
67 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
68 |
"""
|
69 |
|
70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
|
5 |
@dataclass
|
6 |
class Task:
|
7 |
benchmark: str
|
8 |
metric: str
|
9 |
col_name: str
|
10 |
+
category: str
|
11 |
|
12 |
|
13 |
# Select your tasks here
|
14 |
# ---------------------------------------------------
|
15 |
class Tasks(Enum):
|
16 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
17 |
+
task0 = Task("anli_r1", "acc", "ANLI", "")
|
18 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA", "")
|
19 |
|
|
|
|
|
20 |
|
21 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
22 |
+
# ---------------------------------------------------
|
23 |
|
24 |
|
25 |
# Your leaderboard name
|
|
|
35 |
## How it works
|
36 |
|
37 |
## Reproducibility
|
38 |
+
To reproduce our results, check out our repository [here](https://github.com/ttsds/ttsds).
|
39 |
|
40 |
"""
|
41 |
|
42 |
EVALUATION_QUEUE_TEXT = """
|
43 |
+
## How to submit a TTS model to the leaderboard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
### 1) download the evaluation dataset
|
46 |
+
The evaluation dataset consists of wav / text pairs.
|
47 |
+
You can download it [here](https://huggingface.co/ttsds/eval).
|
48 |
|
49 |
+
### 2) create your TTS dataset
|
50 |
+
Create a dataset with your TTS model and the evaluation dataset.
|
51 |
+
Use the wav files as speaker reference and the text as the prompt.
|
52 |
+
Create a .tar.gz file with the dataset, and make sure to inlcude .wav files and .txt files.
|
53 |
|
54 |
+
### 3) submit your TTS dataset
|
55 |
+
Submit your dataset below.
|
|
|
|
|
56 |
"""
|
57 |
|
58 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
src/display/utils.py
CHANGED
@@ -22,32 +22,22 @@ class ColumnContent:
|
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
|
25 |
-
@dataclass
|
26 |
class AutoEvalColumn:
|
27 |
-
model_type_symbol = ColumnContent("model_type_symbol", "str", True, never_hidden=True)
|
28 |
model = ColumnContent("model", "markdown", True, never_hidden=True)
|
29 |
average = ColumnContent("average", "number", True)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
license = ColumnContent("license", "str", False)
|
37 |
-
params = ColumnContent("#Params (B)", "number", False)
|
38 |
-
likes = ColumnContent("Hub ❤️", "number", False)
|
39 |
-
still_on_hub = ColumnContent("Available on the hub", "bool", False)
|
40 |
-
revision = ColumnContent("Model sha", "str", False, False)
|
41 |
|
42 |
|
43 |
## For the queue columns in the submission tab
|
44 |
@dataclass(frozen=True)
|
45 |
class EvalQueueColumn: # Queue column
|
46 |
model = ColumnContent("model", "markdown", True)
|
47 |
-
revision = ColumnContent("revision", "str", True)
|
48 |
-
private = ColumnContent("private", "bool", True)
|
49 |
-
precision = ColumnContent("precision", "str", True)
|
50 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
51 |
status = ColumnContent("status", "str", True)
|
52 |
|
53 |
|
@@ -59,64 +49,10 @@ class ModelDetails:
|
|
59 |
symbol: str = "" # emoji
|
60 |
|
61 |
|
62 |
-
class ModelType(Enum):
|
63 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
64 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
65 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
66 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
67 |
-
Unknown = ModelDetails(name="", symbol="?")
|
68 |
-
|
69 |
-
def to_str(self, separator=" "):
|
70 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
def from_str(type):
|
74 |
-
if "fine-tuned" in type or "🔶" in type:
|
75 |
-
return ModelType.FT
|
76 |
-
if "pretrained" in type or "🟢" in type:
|
77 |
-
return ModelType.PT
|
78 |
-
if "RL-tuned" in type or "🟦" in type:
|
79 |
-
return ModelType.RL
|
80 |
-
if "instruction-tuned" in type or "⭕" in type:
|
81 |
-
return ModelType.IFT
|
82 |
-
return ModelType.Unknown
|
83 |
-
|
84 |
-
|
85 |
-
class WeightType(Enum):
|
86 |
-
Adapter = ModelDetails("Adapter")
|
87 |
-
Original = ModelDetails("Original")
|
88 |
-
Delta = ModelDetails("Delta")
|
89 |
-
|
90 |
-
|
91 |
-
class Precision(Enum):
|
92 |
-
float16 = ModelDetails("float16")
|
93 |
-
bfloat16 = ModelDetails("bfloat16")
|
94 |
-
float32 = ModelDetails("float32")
|
95 |
-
# qt_8bit = ModelDetails("8bit")
|
96 |
-
# qt_4bit = ModelDetails("4bit")
|
97 |
-
# qt_GPTQ = ModelDetails("GPTQ")
|
98 |
-
Unknown = ModelDetails("?")
|
99 |
-
|
100 |
-
def from_str(precision):
|
101 |
-
if precision in ["torch.float16", "float16"]:
|
102 |
-
return Precision.float16
|
103 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
104 |
-
return Precision.bfloat16
|
105 |
-
if precision in ["float32"]:
|
106 |
-
return Precision.float32
|
107 |
-
# if precision in ["8bit"]:
|
108 |
-
# return Precision.qt_8bit
|
109 |
-
# if precision in ["4bit"]:
|
110 |
-
# return Precision.qt_4bit
|
111 |
-
# if precision in ["GPTQ", "None"]:
|
112 |
-
# return Precision.qt_GPTQ
|
113 |
-
return Precision.Unknown
|
114 |
-
|
115 |
-
|
116 |
# Column selection
|
117 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
118 |
|
119 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
120 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
121 |
|
122 |
-
BENCHMARK_COLS = [
|
|
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
|
25 |
+
@dataclass(frozen=True)
|
26 |
class AutoEvalColumn:
|
|
|
27 |
model = ColumnContent("model", "markdown", True, never_hidden=True)
|
28 |
average = ColumnContent("average", "number", True)
|
29 |
+
general = ColumnContent("general", "number", True)
|
30 |
+
speaker = ColumnContent("speaker", "number", True)
|
31 |
+
prosody = ColumnContent("prosody", "number", True)
|
32 |
+
intelligibility = ColumnContent("intelligibility", "number", True)
|
33 |
+
environment = ColumnContent("environment", "number", True)
|
34 |
+
tags = ColumnContent("tags", "str", False)
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
## For the queue columns in the submission tab
|
38 |
@dataclass(frozen=True)
|
39 |
class EvalQueueColumn: # Queue column
|
40 |
model = ColumnContent("model", "markdown", True)
|
|
|
|
|
|
|
|
|
41 |
status = ColumnContent("status", "str", True)
|
42 |
|
43 |
|
|
|
49 |
symbol: str = "" # emoji
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Column selection
|
53 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
54 |
|
55 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
56 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
57 |
|
58 |
+
BENCHMARK_COLS = ["general", "speaker", "prosody", "intelligibility", "environment"]
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,28 +8,16 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn,
|
12 |
|
13 |
|
14 |
@dataclass
|
15 |
class EvalResult:
|
16 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
17 |
|
18 |
-
|
19 |
-
full_model: str # org/model (path on hub)
|
20 |
-
org: str
|
21 |
-
model: str
|
22 |
-
revision: str # commit hash, "" if main
|
23 |
results: dict
|
24 |
-
precision: Precision = Precision.Unknown
|
25 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
26 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
27 |
-
architecture: str = "Unknown"
|
28 |
-
license: str = "?"
|
29 |
-
likes: int = 0
|
30 |
-
num_params: int = 0
|
31 |
date: str = "" # submission date of request file
|
32 |
-
still_on_hub: bool = False
|
33 |
|
34 |
@classmethod
|
35 |
def init_from_json_file(self, json_filepath):
|
@@ -39,22 +27,8 @@ class EvalResult:
|
|
39 |
|
40 |
config = data.get("config")
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
# Get model and org
|
46 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
47 |
-
org_and_model = org_and_model.split("/", 1)
|
48 |
-
|
49 |
-
if len(org_and_model) == 1:
|
50 |
-
org = None
|
51 |
-
model = org_and_model[0]
|
52 |
-
result_key = f"{model}_{precision.value.name}"
|
53 |
-
else:
|
54 |
-
org = org_and_model[0]
|
55 |
-
model = org_and_model[1]
|
56 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
57 |
-
full_model = "/".join(org_and_model)
|
58 |
|
59 |
# Extract results available in this file (some results are split in several files)
|
60 |
results = {}
|
@@ -70,28 +44,19 @@ class EvalResult:
|
|
70 |
results[task.benchmark] = mean_acc
|
71 |
|
72 |
return self(
|
73 |
-
|
74 |
-
full_model=full_model,
|
75 |
-
org=org,
|
76 |
-
model=model,
|
77 |
results=results,
|
78 |
-
precision=precision,
|
79 |
-
revision=config.get("model_sha", ""),
|
80 |
)
|
81 |
|
82 |
def update_with_request_file(self, requests_path):
|
83 |
"""Finds the relevant request file for the current model and updates info with it"""
|
84 |
-
request_file = get_request_file_for_model(requests_path, self.full_model
|
85 |
|
86 |
try:
|
87 |
with open(request_file, "r") as f:
|
88 |
request = json.load(f)
|
89 |
-
self.
|
90 |
-
self.
|
91 |
-
self.license = request.get("license", "?")
|
92 |
-
self.likes = request.get("likes", 0)
|
93 |
-
self.num_params = request.get("params", 0)
|
94 |
-
self.date = request.get("submitted_time", "")
|
95 |
except Exception:
|
96 |
print(
|
97 |
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
@@ -99,30 +64,11 @@ class EvalResult:
|
|
99 |
|
100 |
def to_dict(self):
|
101 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
102 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
103 |
data_dict = {
|
104 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
105 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
106 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
107 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
108 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
109 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
110 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
111 |
-
AutoEvalColumn.revision.name: self.revision,
|
112 |
-
AutoEvalColumn.average.name: average,
|
113 |
-
AutoEvalColumn.license.name: self.license,
|
114 |
-
AutoEvalColumn.likes.name: self.likes,
|
115 |
-
AutoEvalColumn.params.name: self.num_params,
|
116 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
117 |
-
}
|
118 |
-
|
119 |
-
for task in Tasks:
|
120 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
121 |
|
122 |
-
return data_dict
|
123 |
|
124 |
|
125 |
-
def get_request_file_for_model(requests_path, model_name
|
126 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
127 |
request_files = os.path.join(
|
128 |
requests_path,
|
@@ -130,13 +76,13 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
130 |
)
|
131 |
request_files = glob.glob(request_files)
|
132 |
|
133 |
-
# Select correct request file
|
134 |
request_file = ""
|
135 |
request_files = sorted(request_files, reverse=True)
|
136 |
for tmp_request_file in request_files:
|
137 |
with open(tmp_request_file, "r") as f:
|
138 |
req_content = json.load(f)
|
139 |
-
if req_content["status"] in ["FINISHED"]
|
140 |
request_file = tmp_request_file
|
141 |
return request_file
|
142 |
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, Tasks
|
12 |
|
13 |
|
14 |
@dataclass
|
15 |
class EvalResult:
|
16 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
17 |
|
18 |
+
model_id: str
|
|
|
|
|
|
|
|
|
19 |
results: dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
date: str = "" # submission date of request file
|
|
|
21 |
|
22 |
@classmethod
|
23 |
def init_from_json_file(self, json_filepath):
|
|
|
27 |
|
28 |
config = data.get("config")
|
29 |
|
30 |
+
# Extract model info
|
31 |
+
model = config.get("model_name", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Extract results available in this file (some results are split in several files)
|
34 |
results = {}
|
|
|
44 |
results[task.benchmark] = mean_acc
|
45 |
|
46 |
return self(
|
47 |
+
model_id=model,
|
|
|
|
|
|
|
48 |
results=results,
|
|
|
|
|
49 |
)
|
50 |
|
51 |
def update_with_request_file(self, requests_path):
|
52 |
"""Finds the relevant request file for the current model and updates info with it"""
|
53 |
+
request_file = get_request_file_for_model(requests_path, self.full_model)
|
54 |
|
55 |
try:
|
56 |
with open(request_file, "r") as f:
|
57 |
request = json.load(f)
|
58 |
+
self.model_id = request.get("model", self.model_id)
|
59 |
+
self.results
|
|
|
|
|
|
|
|
|
60 |
except Exception:
|
61 |
print(
|
62 |
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
|
|
64 |
|
65 |
def to_dict(self):
|
66 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
67 |
data_dict = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
69 |
|
70 |
|
71 |
+
def get_request_file_for_model(requests_path, model_name):
|
72 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
73 |
request_files = os.path.join(
|
74 |
requests_path,
|
|
|
76 |
)
|
77 |
request_files = glob.glob(request_files)
|
78 |
|
79 |
+
# Select correct request file
|
80 |
request_file = ""
|
81 |
request_files = sorted(request_files, reverse=True)
|
82 |
for tmp_request_file in request_files:
|
83 |
with open(tmp_request_file, "r") as f:
|
84 |
req_content = json.load(f)
|
85 |
+
if req_content["status"] in ["FINISHED"]:
|
86 |
request_file = tmp_request_file
|
87 |
return request_file
|
88 |
|
src/submission/submit.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
|
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
@@ -13,7 +14,7 @@ USERS_TO_SUBMISSION_DATES = None
|
|
13 |
|
14 |
def add_new_eval(
|
15 |
model: str,
|
16 |
-
|
17 |
):
|
18 |
global REQUESTED_MODELS
|
19 |
global USERS_TO_SUBMISSION_DATES
|
@@ -34,7 +35,6 @@ def add_new_eval(
|
|
34 |
|
35 |
eval_entry = {
|
36 |
"model": model,
|
37 |
-
"revision": revision,
|
38 |
"status": "PENDING",
|
39 |
"submitted_time": current_time,
|
40 |
"private": False,
|
@@ -47,7 +47,7 @@ def add_new_eval(
|
|
47 |
print("Creating eval file")
|
48 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
49 |
os.makedirs(OUT_DIR, exist_ok=True)
|
50 |
-
out_path = f"{OUT_DIR}/{model_name}
|
51 |
|
52 |
with open(out_path, "w") as f:
|
53 |
f.write(json.dumps(eval_entry))
|
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
4 |
+
from typing import List
|
5 |
|
6 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
7 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
|
|
14 |
|
15 |
def add_new_eval(
|
16 |
model: str,
|
17 |
+
tags: List[str],
|
18 |
):
|
19 |
global REQUESTED_MODELS
|
20 |
global USERS_TO_SUBMISSION_DATES
|
|
|
35 |
|
36 |
eval_entry = {
|
37 |
"model": model,
|
|
|
38 |
"status": "PENDING",
|
39 |
"submitted_time": current_time,
|
40 |
"private": False,
|
|
|
47 |
print("Creating eval file")
|
48 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
49 |
os.makedirs(OUT_DIR, exist_ok=True)
|
50 |
+
out_path = f"{OUT_DIR}/{model_name}_eval_request_False.json"
|
51 |
|
52 |
with open(out_path, "w") as f:
|
53 |
f.write(json.dumps(eval_entry))
|