File size: 68,114 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from abc import ABCMeta

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (
    Conv2d,
    ConvModule,
    Linear,
    bias_init_with_prob,
    build_activation_layer,
    constant_init,
)
from mmcv.cnn.bricks.transformer import FFN
from mmcv.ops import batched_nms
from mmcv.runner import BaseModule, force_fp32

from detrsmpl.core.post_processing.bbox.assigners import build_assigner
# from detrsmpl.core.post_processing.bbox.coder import build_bbox_coder
from detrsmpl.core.post_processing.bbox.samplers import build_sampler
from detrsmpl.core.post_processing.bbox.transforms import (
    bbox_cxcywh_to_xyxy,
    bbox_xyxy_to_cxcywh,
)
# from mmdet.core.anchor.point_generator import MlvlPointGenerator
# from mmdet.core.utils import filter_scores_and_topk, select_single_mlvl
from detrsmpl.models.utils import (
    build_positional_encoding,
    build_transformer,
    inverse_sigmoid,
)
from detrsmpl.utils.dist_utils import reduce_mean
from detrsmpl.utils.geometry import rot6d_to_rotmat
# from utils.misc import multi_apply
from detrsmpl.utils.misc import multi_apply
from ..losses.builder import build_loss


class DETRHead(BaseModule, metaclass=ABCMeta):
    """Implements the DETR transformer head.

    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.

    Args:
        num_classes (int): Number of categories excluding the background.
        in_channels (int): Number of channels in the input feature map.
        num_query (int): Number of query in Transformer.
        num_reg_fcs (int, optional): Number of fully-connected layers used in
            `FFN`, which is then used for the regression head. Default 2.
        transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer.
            Default: None.
        sync_cls_avg_factor (bool): Whether to sync the avg_factor of
            all ranks. Default to False.
        positional_encoding (obj:`mmcv.ConfigDict`|dict):
            Config for position encoding.
        loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the
            classification loss. Default `CrossEntropyLoss`.
        loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the
            regression loss. Default `L1Loss`.
        loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the
            regression iou loss. Default `GIoULoss`.
        tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of
            transformer head.
        test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of
            transformer head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    _version = 2

    def __init__(
            self,
            num_classes,
            in_channels,
            # anchor free
            feat_channels=256,
            stacked_convs=4,
            strides=(4, 8, 16, 32, 64),
            dcn_on_last_conv=False,
            conv_bias='auto',
            num_query=100,
            num_reg_fcs=2,
            transformer=None,
            sync_cls_avg_factor=False,
            positional_encoding=dict(type='SinePositionalEncoding',
                                     num_feats=128,
                                     normalize=True),
            loss_cls=dict(type='CrossEntropyLoss',
                          bg_cls_weight=0.1,
                          use_sigmoid=False,
                          loss_weight=1.0,
                          class_weight=1.0),
            loss_bbox=dict(type='L1Loss', loss_weight=5.0),
            loss_iou=dict(type='GIoULoss', loss_weight=2.0),
            # anchor free
            bbox_coder=dict(type='DistancePointBBoxCoder'),
            conv_cfg=None,
            norm_cfg=None,
            train_cfg=dict(assigner=dict(
                type='HungarianAssigner',
                # cls_cost=dict(type='ClassificationCost', weight=1.),
                # reg_cost=dict(type='BBoxL1Cost', weight=5.0),
                # iou_cost=dict(type='IoUCost', iou_mode='giou',
                #               weight=2.0)
                kp3d_cost=dict(
                    type='Keypoints3DCost', convention='smpl_54', weight=5.0),
                kp2d_cost=dict(
                    type='Keypoints2DCost', convention='smpl_54', weight=5.0),
            )),
            test_cfg=dict(max_per_img=100),
            init_cfg=dict(type='Normal',
                          layer='Conv2d',
                          std=0.01,
                          override=dict(type='Normal',
                                        name='conv_cls',
                                        std=0.01,
                                        bias_prob=0.01)),
            **kwargs):
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since it brings inconvenience when the initialization of
        # `AnchorFreeHead` is called.
        super(DETRHead, self).__init__(init_cfg)
        self.bg_cls_weight = 0
        self.sync_cls_avg_factor = sync_cls_avg_factor
        class_weight = loss_cls.get('class_weight', None)
        if class_weight is not None and (self.__class__ is DETRHead):
            assert isinstance(class_weight, float), 'Expected ' \
                'class_weight to have type float. Found ' \
                f'{type(class_weight)}.'
            # NOTE following the official DETR rep0, bg_cls_weight means
            # relative classification weight of the no-object class.
            bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
            assert isinstance(bg_cls_weight, float), 'Expected ' \
                'bg_cls_weight to have type float. Found ' \
                f'{type(bg_cls_weight)}.'
            class_weight = torch.ones(num_classes + 1) * class_weight
            # set background class as the last indice
            class_weight[num_classes] = bg_cls_weight
            loss_cls.update({'class_weight': class_weight})
            if 'bg_cls_weight' in loss_cls:
                loss_cls.pop('bg_cls_weight')
            self.bg_cls_weight = bg_cls_weight

        if train_cfg:
            assert 'assigner' in train_cfg, 'assigner should be provided '\
                'when train_cfg is set.'
            assigner = train_cfg['assigner']
            # TODO: update these
            # assert loss_cls['loss_weight'] == assigner['kp3d_cost']['weight'], \
            #     'The classification weight for loss and matcher should be' \
            #     'exactly the same.'
            # assert loss_bbox['loss_weight'] == assigner['kp3d_cost'][
            #     'weight'], 'The regression L1 weight for loss and matcher ' \
            #     'should be exactly the same.'
            # assert loss_iou['loss_weight'] == assigner['kp3d_cost']['weight'], \
            #     'The regression iou weight for loss and matcher should be' \
            #     'exactly the same.'
            self.assigner = build_assigner(assigner)
            # DETR sampling=False, so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)

        self.num_query = num_query
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.num_reg_fcs = num_reg_fcs
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.fp16_enabled = False
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_iou = build_loss(loss_iou)

        if self.loss_cls.use_sigmoid:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1
        self.act_cfg = transformer.get('act_cfg',
                                       dict(type='ReLU', inplace=True))
        self.activate = build_activation_layer(self.act_cfg)
        self.positional_encoding = build_positional_encoding(
            positional_encoding)
        self.transformer = build_transformer(transformer)
        self.embed_dims = self.transformer.embed_dims
        assert 'num_feats' in positional_encoding
        num_feats = positional_encoding['num_feats']
        assert num_feats * 2 == self.embed_dims, 'embed_dims should' \
            f' be exactly 2 times of num_feats. Found {self.embed_dims}' \
            f' and {num_feats}.'
        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the transformer head."""
        self.input_proj = Conv2d(self.in_channels,
                                 self.embed_dims,
                                 kernel_size=1)
        self.fc_cls = Linear(self.embed_dims, self.cls_out_channels)
        self.reg_ffn = FFN(self.embed_dims,
                           self.embed_dims,
                           self.num_reg_fcs,
                           self.act_cfg,
                           dropout=0.0,
                           add_residual=False)
        self.fc_reg = Linear(self.embed_dims, 4)
        self.query_embedding = nn.Embedding(self.num_query, self.embed_dims)

    def init_weights(self):
        """Initialize weights of the transformer head."""
        # The initialization for transformer is important
        self.transformer.init_weights()

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        """load checkpoints."""
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since `AnchorFreeHead._load_from_state_dict` should not be
        # called here. Invoking the default `Module._load_from_state_dict`
        # is enough.

        # Names of some parameters in has been changed.
        version = local_metadata.get('version', None)
        if (version is None or version < 2) and self.__class__ is DETRHead:
            convert_dict = {
                '.self_attn.': '.attentions.0.',
                '.ffn.': '.ffns.0.',
                '.multihead_attn.': '.attentions.1.',
                '.decoder.norm.': '.decoder.post_norm.'
            }
            state_dict_keys = list(state_dict.keys())
            for k in state_dict_keys:
                for ori_key, convert_key in convert_dict.items():
                    if ori_key in k:
                        convert_key = k.replace(ori_key, convert_key)
                        state_dict[convert_key] = state_dict[k]
                        del state_dict[k]

        super()._load_from_state_dict(state_dict, prefix, local_metadata,
                                      strict, missing_keys, unexpected_keys,
                                      error_msgs)

    def forward(self, feats, img_metas):
        """Forward function.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            img_metas (list[dict]): List of image information.

        Returns:
            tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.

                - all_cls_scores_list (list[Tensor]): Classification scores \
                    for each scale level. Each is a 4D-tensor with shape \
                    [nb_dec, bs, num_query, cls_out_channels]. Note \
                    `cls_out_channels` should includes background.
                - all_bbox_preds_list (list[Tensor]): Sigmoid regression \
                    outputs for each scale level. Each is a 4D-tensor with \
                    normalized coordinate format (cx, cy, w, h) and shape \
                    [nb_dec, bs, num_query, 4].
        """
        num_levels = len(feats)
        img_metas_list = [img_metas for _ in range(num_levels)]
        return multi_apply(self.forward_single, feats, img_metas_list)

    def forward_single(self, x, img_metas):
        """"Forward function for a single feature level.

        Args:
            x (Tensor): Input feature from backbone's single stage, shape
                [bs, c, h, w].
            img_metas (list[dict]): List of image information.

        Returns:
            all_cls_scores (Tensor): Outputs from the classification head,
                shape [nb_dec, bs, num_query, cls_out_channels]. Note
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression
                head with normalized coordinate format (cx, cy, w, h).
                Shape [nb_dec, bs, num_query, 4].
        """
        # construct binary masks which used for the transformer.
        # NOTE following the official DETR repo, non-zero values representing
        # ignored positions, while zero values means valid positions.
        batch_size = x.size(0)
        input_img_h, input_img_w = img_metas[0]['batch_input_shape']
        masks = x.new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w, _ = img_metas[img_id]['img_shape']
            masks[img_id, :img_h, :img_w] = 0

        x = self.input_proj(x)
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(masks.unsqueeze(1),
                              size=x.shape[-2:]).to(torch.bool).squeeze(1)
        # position encoding
        pos_embed = self.positional_encoding(masks)  # [bs, embed_dim, h, w]
        # outs_dec: [nb_dec, bs, num_query, embed_dim]
        outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

        all_cls_scores = self.fc_cls(outs_dec)
        all_bbox_preds = self.fc_reg(self.activate(
            self.reg_ffn(outs_dec))).sigmoid()
        return all_cls_scores, all_bbox_preds

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def loss(self,
             all_cls_scores_list,
             all_bbox_preds_list,
             gt_bboxes_list,
             gt_labels_list,
             img_metas,
             gt_bboxes_ignore=None):
        """"Loss function.

        Only outputs from the last feature level are used for computing
        losses by default.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
                which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        # NOTE defaultly only the outputs from the last feature scale is used.
        all_cls_scores = all_cls_scores_list[-1]
        all_bbox_preds = all_bbox_preds_list[-1]
        assert gt_bboxes_ignore is None, \
            'Only supports for gt_bboxes_ignore setting to None.'

        num_dec_layers = len(all_cls_scores)
        all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
        all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)]
        all_gt_bboxes_ignore_list = [
            gt_bboxes_ignore for _ in range(num_dec_layers)
        ]
        img_metas_list = [img_metas for _ in range(num_dec_layers)]

        losses_cls, losses_bbox, losses_iou = multi_apply(
            self.loss_single, all_cls_scores, all_bbox_preds,
            all_gt_bboxes_list, all_gt_labels_list, img_metas_list,
            all_gt_bboxes_ignore_list)

        loss_dict = dict()
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]
        loss_dict['loss_iou'] = losses_iou[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1],
                                                       losses_bbox[:-1],
                                                       losses_iou[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
            num_dec_layer += 1
        return loss_dict

    def loss_single(self,
                    cls_scores,
                    bbox_preds,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
        """"Loss function for outputs from a single decoder layer of a single
        feature level.

        Args:
            cls_scores (Tensor): Box score logits from a single decoder layer
                for all images. Shape [bs, num_query, cls_out_channels].
            bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
                for all images, with normalized coordinate (cx, cy, w, h) and
                shape [bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components for outputs from
                a single decoder layer.
        """
        num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           gt_bboxes_list, gt_labels_list,
                                           img_metas, gt_bboxes_ignore_list)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)
        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        if self.sync_cls_avg_factor:
            cls_avg_factor = reduce_mean(
                cls_scores.new_tensor([cls_avg_factor]))
        cls_avg_factor = max(cls_avg_factor, 1)

        loss_cls = self.loss_cls(cls_scores,
                                 labels,
                                 label_weights,
                                 avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # construct factors used for rescale bboxes
        factors = []
        for img_meta, bbox_pred in zip(img_metas, bbox_preds):
            img_h, img_w, _ = img_meta['img_shape']
            factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                           img_h]).unsqueeze(0).repeat(
                                               bbox_pred.size(0), 1)
            factors.append(factor)
        factors = torch.cat(factors, 0)

        # DETR regress the relative position of boxes (cxcywh) in the image,
        # thus the learning target is normalized by the image size. So here
        # we need to re-scale them for calculating IoU loss
        bbox_preds = bbox_preds.reshape(-1, 4)
        bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
        bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors

        # regression IoU loss, defaultly GIoU loss
        loss_iou = self.loss_iou(bboxes,
                                 bboxes_gt,
                                 bbox_weights,
                                 avg_factor=num_total_pos)

        # regression L1 loss
        loss_bbox = self.loss_bbox(bbox_preds,
                                   bbox_targets,
                                   bbox_weights,
                                   avg_factor=num_total_pos)
        return loss_cls, loss_bbox, loss_iou

    def get_targets(self,
                    cls_scores_list,
                    bbox_preds_list,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
        """"Compute regression and classification targets for a batch image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_scores_list (list[Tensor]): Box score logits from a single
                decoder layer for each image with shape [num_query,
                cls_out_channels].
            bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
                decoder layer for each image, with normalized coordinate
                (cx, cy, w, h) and shape [num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.

        Returns:
            tuple: a tuple containing the following targets.

                - labels_list (list[Tensor]): Labels for all images.
                - label_weights_list (list[Tensor]): Label weights for all \
                    images.
                - bbox_targets_list (list[Tensor]): BBox targets for all \
                    images.
                - bbox_weights_list (list[Tensor]): BBox weights for all \
                    images.
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
        """
        assert gt_bboxes_ignore_list is None, \
            'Only supports for gt_bboxes_ignore setting to None.'
        num_imgs = len(cls_scores_list)
        gt_bboxes_ignore_list = [
            gt_bboxes_ignore_list for _ in range(num_imgs)
        ]

        (labels_list, label_weights_list, bbox_targets_list,
         bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply(
             self._get_target_single, cls_scores_list, bbox_preds_list,
             gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list)
        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def _get_target_single(self,
                           cls_score,
                           bbox_pred,
                           gt_bboxes,
                           gt_labels,
                           img_meta,
                           gt_bboxes_ignore=None):
        """"Compute regression and classification targets for one image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_score (Tensor): Box score logits from a single decoder layer
                for one image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
                for one image, with normalized coordinate (cx, cy, w, h) and
                shape [num_query, 4].
            gt_bboxes (Tensor): Ground truth bboxes for one image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (Tensor): Ground truth class indices for one image
                with shape (num_gts, ).
            img_meta (dict): Meta information for one image.
            gt_bboxes_ignore (Tensor, optional): Bounding boxes
                which can be ignored. Default None.

        Returns:
            tuple[Tensor]: a tuple containing the following for one image.

                - labels (Tensor): Labels of each image.
                - label_weights (Tensor]): Label weights of each image.
                - bbox_targets (Tensor): BBox targets of each image.
                - bbox_weights (Tensor): BBox weights of each image.
                - pos_inds (Tensor): Sampled positive indices for each image.
                - neg_inds (Tensor): Sampled negative indices for each image.
        """

        num_bboxes = bbox_pred.size(0)
        # assigner and sampler
        assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes,
                                             gt_labels, img_meta,
                                             gt_bboxes_ignore)
        sampling_result = self.sampler.sample(assign_result, bbox_pred,
                                              gt_bboxes)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label targets
        labels = gt_bboxes.new_full((num_bboxes, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_bboxes)

        # bbox targets
        bbox_targets = torch.zeros_like(bbox_pred)
        bbox_weights = torch.zeros_like(bbox_pred)
        bbox_weights[pos_inds] = 1.0
        img_h, img_w, _ = img_meta['img_shape']

        # DETR regress the relative position of boxes (cxcywh) in the image.
        # Thus the learning target should be normalized by the image size, also
        # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
        factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)
        pos_gt_bboxes_normalized = sampling_result.pos_gt_bboxes / factor
        pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
        bbox_targets[pos_inds] = pos_gt_bboxes_targets
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    # over-write because img_metas are needed as inputs for bbox_head.
    def forward_train(self,
                      x,
                      img_metas,
                      gt_bboxes,
                      gt_labels=None,
                      gt_bboxes_ignore=None,
                      proposal_cfg=None,
                      **kwargs):
        """Forward function for training mode.

        Args:
            x (list[Tensor]): Features from backbone.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            proposal_cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert proposal_cfg is None, '"proposal_cfg" must be None'
        outs = self(x, img_metas)
        if gt_labels is None:
            loss_inputs = outs + (gt_bboxes, img_metas)
        else:
            loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
        losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        return losses

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def get_bboxes(self,
                   all_cls_scores_list,
                   all_bbox_preds_list,
                   img_metas,
                   rescale=False):
        """Transform network outputs for a batch into bbox predictions.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            img_metas (list[dict]): Meta information of each image.
            rescale (bool, optional): If True, return boxes in original
                image space. Default False.

        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \
                The first item is an (n, 5) tensor, where the first 4 columns \
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the \
                5-th column is a score between 0 and 1. The second item is a \
                (n,) tensor where each item is the predicted class label of \
                the corresponding box.
        """
        # NOTE defaultly only using outputs from the last feature level,
        # and only the outputs from the last decoder layer is used.
        cls_scores = all_cls_scores_list[-1][-1]
        bbox_preds = all_bbox_preds_list[-1][-1]

        result_list = []
        for img_id in range(len(img_metas)):
            cls_score = cls_scores[img_id]
            bbox_pred = bbox_preds[img_id]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
            proposals = self._get_bboxes_single(cls_score, bbox_pred,
                                                img_shape, scale_factor,
                                                rescale)
            result_list.append(proposals)

        return result_list

    def _get_bboxes_single(self,
                           cls_score,
                           bbox_pred,
                           img_shape,
                           scale_factor,
                           rescale=False):
        """Transform outputs from the last decoder layer into bbox predictions
        for each image.

        Args:
            cls_score (Tensor): Box score logits from the last decoder layer
                for each image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
                for each image, with coordinate format (cx, cy, w, h) and
                shape [num_query, 4].
            img_shape (tuple[int]): Shape of input image, (height, width, 3).
            scale_factor (ndarray, optional): Scale factor of the image arange
                as (w_scale, h_scale, w_scale, h_scale).
            rescale (bool, optional): If True, return boxes in original image
                space. Default False.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels.

                - det_bboxes: Predicted bboxes with shape [num_query, 5], \
                    where the first 4 columns are bounding box positions \
                    (tl_x, tl_y, br_x, br_y) and the 5-th column are scores \
                    between 0 and 1.
                - det_labels: Predicted labels of the corresponding box with \
                    shape [num_query].
        """
        assert len(cls_score) == len(bbox_pred)
        max_per_img = self.test_cfg.get('max_per_img', self.num_query)
        # exclude background
        if self.loss_cls.use_sigmoid:
            cls_score = cls_score.sigmoid()
            scores, indexes = cls_score.view(-1).topk(max_per_img)
            det_labels = indexes % self.num_classes
            bbox_index = indexes // self.num_classes
            bbox_pred = bbox_pred[bbox_index]
        else:
            scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1)
            scores, bbox_index = scores.topk(max_per_img)
            bbox_pred = bbox_pred[bbox_index]
            det_labels = det_labels[bbox_index]

        det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
        det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
        det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
        det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
        det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
        if rescale:
            det_bboxes /= det_bboxes.new_tensor(scale_factor)
        det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(1)), -1)

        return det_bboxes, det_labels

    def simple_test_bboxes(self, feats, img_metas, rescale=False):
        """Test det bboxes without test-time augmentation.

        Args:
            feats (tuple[torch.Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            img_metas (list[dict]): List of image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is ``bboxes`` with shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
                The shape of the second tensor in the tuple is ``labels``
                with shape (n,)
        """
        # forward of this head requires img_metas
        outs = self.forward(feats, img_metas)
        results_list = self.get_bboxes(*outs, img_metas, rescale=rescale)
        return results_list

    def forward_onnx(self, feats, img_metas):
        """Forward function for exporting to ONNX.

        Over-write `forward` because: `masks` is directly created with
        zero (valid position tag) and has the same spatial size as `x`.
        Thus the construction of `masks` is different from that in `forward`.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            img_metas (list[dict]): List of image information.

        Returns:
            tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.

                - all_cls_scores_list (list[Tensor]): Classification scores \
                    for each scale level. Each is a 4D-tensor with shape \
                    [nb_dec, bs, num_query, cls_out_channels]. Note \
                    `cls_out_channels` should includes background.
                - all_bbox_preds_list (list[Tensor]): Sigmoid regression \
                    outputs for each scale level. Each is a 4D-tensor with \
                    normalized coordinate format (cx, cy, w, h) and shape \
                    [nb_dec, bs, num_query, 4].
        """
        num_levels = len(feats)
        img_metas_list = [img_metas for _ in range(num_levels)]
        return multi_apply(self.forward_single_onnx, feats, img_metas_list)

    def forward_single_onnx(self, x, img_metas):
        """"Forward function for a single feature level with ONNX exportation.

        Args:
            x (Tensor): Input feature from backbone's single stage, shape
                [bs, c, h, w].
            img_metas (list[dict]): List of image information.

        Returns:
            all_cls_scores (Tensor): Outputs from the classification head,
                shape [nb_dec, bs, num_query, cls_out_channels]. Note
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression
                head with normalized coordinate format (cx, cy, w, h).
                Shape [nb_dec, bs, num_query, 4].
        """
        # Note `img_shape` is not dynamically traceable to ONNX,
        # since the related augmentation was done with numpy under
        # CPU. Thus `masks` is directly created with zeros (valid tag)
        # and the same spatial shape as `x`.
        # The difference between torch and exported ONNX model may be
        # ignored, since the same performance is achieved (e.g.
        # 40.1 vs 40.1 for DETR)
        batch_size = x.size(0)
        h, w = x.size()[-2:]
        masks = x.new_zeros((batch_size, h, w))  # [B,h,w]

        x = self.input_proj(x)
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(masks.unsqueeze(1),
                              size=x.shape[-2:]).to(torch.bool).squeeze(1)
        pos_embed = self.positional_encoding(masks)
        outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

        all_cls_scores = self.fc_cls(outs_dec)
        all_bbox_preds = self.fc_reg(self.activate(
            self.reg_ffn(outs_dec))).sigmoid()
        return all_cls_scores, all_bbox_preds

    def onnx_export(self, all_cls_scores_list, all_bbox_preds_list, img_metas):
        """Transform network outputs into bbox predictions, with ONNX
        exportation.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            img_metas (list[dict]): Meta information of each image.

        Returns:
            tuple[Tensor, Tensor]: dets of shape [N, num_det, 5]
                and class labels of shape [N, num_det].
        """
        assert len(img_metas) == 1, \
            'Only support one input image while in exporting to ONNX'

        cls_scores = all_cls_scores_list[-1][-1]
        bbox_preds = all_bbox_preds_list[-1][-1]

        # Note `img_shape` is not dynamically traceable to ONNX,
        # here `img_shape_for_onnx` (padded shape of image tensor)
        # is used.
        img_shape = img_metas[0]['img_shape_for_onnx']
        max_per_img = self.test_cfg.get('max_per_img', self.num_query)
        batch_size = cls_scores.size(0)
        # `batch_index_offset` is used for the gather of concatenated tensor
        batch_index_offset = torch.arange(batch_size).to(
            cls_scores.device) * max_per_img
        batch_index_offset = batch_index_offset.unsqueeze(1).expand(
            batch_size, max_per_img)

        # supports dynamical batch inference
        if self.loss_cls.use_sigmoid:
            cls_scores = cls_scores.sigmoid()
            scores, indexes = cls_scores.view(batch_size, -1).topk(max_per_img,
                                                                   dim=1)
            det_labels = indexes % self.num_classes
            bbox_index = indexes // self.num_classes
            bbox_index = (bbox_index + batch_index_offset).view(-1)
            bbox_preds = bbox_preds.view(-1, 4)[bbox_index]
            bbox_preds = bbox_preds.view(batch_size, -1, 4)
        else:
            scores, det_labels = F.softmax(cls_scores,
                                           dim=-1)[..., :-1].max(-1)
            scores, bbox_index = scores.topk(max_per_img, dim=1)
            bbox_index = (bbox_index + batch_index_offset).view(-1)
            bbox_preds = bbox_preds.view(-1, 4)[bbox_index]
            det_labels = det_labels.view(-1)[bbox_index]
            bbox_preds = bbox_preds.view(batch_size, -1, 4)
            det_labels = det_labels.view(batch_size, -1)

        det_bboxes = bbox_cxcywh_to_xyxy(bbox_preds)
        # use `img_shape_tensor` for dynamically exporting to ONNX
        img_shape_tensor = img_shape.flip(0).repeat(2)  # [w,h,w,h]
        img_shape_tensor = img_shape_tensor.unsqueeze(0).unsqueeze(0).expand(
            batch_size, det_bboxes.size(1), 4)
        det_bboxes = det_bboxes * img_shape_tensor
        # dynamically clip bboxes
        x1, y1, x2, y2 = det_bboxes.split((1, 1, 1, 1), dim=-1)
        from mmdet.core.export import dynamic_clip_for_onnx
        x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, img_shape)
        det_bboxes = torch.cat([x1, y1, x2, y2], dim=-1)
        det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(-1)), -1)

        return det_bboxes, det_labels

    # BaseDenseHead
    def _bbox_post_process(self,
                           mlvl_scores,
                           mlvl_labels,
                           mlvl_bboxes,
                           scale_factor,
                           cfg,
                           rescale=False,
                           with_nms=True,
                           mlvl_score_factors=None,
                           **kwargs):
        """bbox post-processing method.

        The boxes would be rescaled to the original image scale and do
        the nms operation. Usually `with_nms` is False is used for aug test.

        Args:
            mlvl_scores (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_bboxes, ).
            mlvl_labels (list[Tensor]): Box class labels from all scale
                levels of a single image, each item has shape
                (num_bboxes, ).
            mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
                levels of a single image, each item has shape (num_bboxes, 4).
            scale_factor (ndarray, optional): Scale factor of the image arange
                as (w_scale, h_scale, w_scale, h_scale).
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.
            mlvl_score_factors (list[Tensor], optional): Score factor from
                all scale levels of a single image, each item has shape
                (num_bboxes, ). Default: None.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels. If with_nms
                is False and mlvl_score_factor is None, return mlvl_bboxes and
                mlvl_scores, else return mlvl_bboxes, mlvl_scores and
                mlvl_score_factor. Usually with_nms is False is used for aug
                test. If with_nms is True, then return the following format

                - det_bboxes (Tensor): Predicted bboxes with shape \
                    [num_bboxes, 5], where the first 4 columns are bounding \
                    box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
                    column are scores between 0 and 1.
                - det_labels (Tensor): Predicted labels of the corresponding \
                    box with shape [num_bboxes].
        """
        assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
        if rescale:
            mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_labels = torch.cat(mlvl_labels)

        if mlvl_score_factors is not None:
            # TODO: Add sqrt operation in order to be consistent with
            #  the paper.
            mlvl_score_factors = torch.cat(mlvl_score_factors)
            mlvl_scores = mlvl_scores * mlvl_score_factors

        if with_nms:
            if mlvl_bboxes.numel() == 0:
                det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1)
                return det_bboxes, mlvl_labels

            det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores,
                                                mlvl_labels, cfg.nms)
            det_bboxes = det_bboxes[:cfg.max_per_img]
            det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img]
            return det_bboxes, det_labels
        else:
            return mlvl_bboxes, mlvl_scores, mlvl_labels

    def simple_test(self, feats, img_metas, rescale=False):
        """Test function without test-time augmentation.

        Args:
            feats (tuple[torch.Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            img_metas (list[dict]): List of image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is ``bboxes`` with shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
                The shape of the second tensor in the tuple is ``labels``
                with shape (n, ).
        """
        return self.simple_test_bboxes(feats, img_metas, rescale=rescale)

    # AnchorfreeHead

    def _init_cls_convs(self):
        """Initialize classification conv layers of the head."""
        self.cls_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            if self.dcn_on_last_conv and i == self.stacked_convs - 1:
                conv_cfg = dict(type='DCNv2')
            else:
                conv_cfg = self.conv_cfg
            self.cls_convs.append(
                ConvModule(chn,
                           self.feat_channels,
                           3,
                           stride=1,
                           padding=1,
                           conv_cfg=conv_cfg,
                           norm_cfg=self.norm_cfg,
                           bias=self.conv_bias))

    def _init_reg_convs(self):
        """Initialize bbox regression conv layers of the head."""
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            if self.dcn_on_last_conv and i == self.stacked_convs - 1:
                conv_cfg = dict(type='DCNv2')
            else:
                conv_cfg = self.conv_cfg
            self.reg_convs.append(
                ConvModule(chn,
                           self.feat_channels,
                           3,
                           stride=1,
                           padding=1,
                           conv_cfg=conv_cfg,
                           norm_cfg=self.norm_cfg,
                           bias=self.conv_bias))

    def _init_predictor(self):
        """Initialize predictor layers of the head."""
        self.conv_cls = nn.Conv2d(self.feat_channels,
                                  self.cls_out_channels,
                                  3,
                                  padding=1)
        self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)

    def _get_points_single(self,
                           featmap_size,
                           stride,
                           dtype,
                           device,
                           flatten=False):
        """Get points of a single scale level.

        This function will be deprecated soon.
        """

        warnings.warn(
            '`_get_points_single` in `AnchorFreeHead` will be '
            'deprecated soon, we support a multi level point generator now'
            'you can get points of a single level feature map '
            'with `self.prior_generator.single_level_grid_priors` ')

        h, w = featmap_size
        # First create Range with the default dtype, than convert to
        # target `dtype` for onnx exporting.
        x_range = torch.arange(w, device=device).to(dtype)
        y_range = torch.arange(h, device=device).to(dtype)
        y, x = torch.meshgrid(y_range, x_range)
        if flatten:
            y = y.flatten()
            x = x.flatten()
        return y, x

    def get_points(self, featmap_sizes, dtype, device, flatten=False):
        """Get points according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            dtype (torch.dtype): Type of points.
            device (torch.device): Device of points.

        Returns:
            tuple: points of each image.
        """
        warnings.warn(
            '`get_points` in `AnchorFreeHead` will be '
            'deprecated soon, we support a multi level point generator now'
            'you can get points of all levels '
            'with `self.prior_generator.grid_priors` ')

        mlvl_points = []
        for i in range(len(featmap_sizes)):
            mlvl_points.append(
                self._get_points_single(featmap_sizes[i], self.strides[i],
                                        dtype, device, flatten))
        return mlvl_points

    def aug_test(self, feats, img_metas, rescale=False):
        """Test function with test time augmentation.

        Args:
            feats (list[Tensor]): the outer list indicates test-time
                augmentations and inner Tensor should have a shape NxCxHxW,
                which contains features for all images in the batch.
            img_metas (list[list[dict]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch. each dict has image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[ndarray]: bbox results of each class
        """
        return self.aug_test_bboxes(feats, img_metas, rescale=rescale)


class DeformableDETRHead(DETRHead):
    """Head of DeformDETR: Deformable DETR: Deformable Transformers for End-to-
    End Object Detection.

    Code is modified from the `official github repo
    <https://github.com/fundamentalvision/Deformable-DETR>`_.

    More details can be found in the `paper
    <https://arxiv.org/abs/2010.04159>`_ .

    Args:
        with_box_refine (bool): Whether to refine the reference points
            in the decoder. Defaults to False.
        as_two_stage (bool) : Whether to generate the proposal from
            the outputs of encoder.
        transformer (obj:`ConfigDict`): ConfigDict is used for building
            the Encoder and Decoder.
    """
    def __init__(
            self,
            *args,
            with_box_refine=False,
            as_two_stage=False,
            transformer=None,
            npose=144,
            nbeta=10,
            ncam=3,
            hdim=256,  # TODO: choose proper hdim
            niter=3,
            smpl_mean_params=None,
            **kwargs):
        self.with_box_refine = with_box_refine
        self.as_two_stage = as_two_stage
        self.npose = npose
        self.nbeta = nbeta
        self.ncam = ncam
        self.hdim = hdim
        self.niter = niter

        if self.as_two_stage:
            transformer['as_two_stage'] = self.as_two_stage

        super(DeformableDETRHead, self).__init__(*args,
                                                 transformer=transformer,
                                                 **kwargs)

        if smpl_mean_params is None:
            init_pose = torch.zeros([1, npose])
            init_shape = torch.zeros([1, nbeta])
            init_cam = torch.FloatTensor([[1, 0, 0]])
        else:
            mean_params = np.load(smpl_mean_params)
            init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
            init_shape = torch.from_numpy(
                mean_params['shape'][:].astype('float32')).unsqueeze(0)
            init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
        self.register_buffer('init_pose', init_pose)
        self.register_buffer('init_shape', init_shape)
        self.register_buffer('init_cam', init_cam)

    def _init_layers(self):
        """Initialize classification branch and regression branch of head."""

        fc_cls = Linear(self.embed_dims, self.cls_out_channels)
        reg_branch = []
        for _ in range(self.num_reg_fcs):
            reg_branch.append(Linear(self.embed_dims, self.embed_dims))
            reg_branch.append(nn.ReLU())
        reg_branch.append(Linear(self.embed_dims, 4))
        reg_branch = nn.Sequential(*reg_branch)

        # smpl branch
        smpl_branch = nn.ModuleList([
            nn.Linear(self.embed_dims + self.npose + self.nbeta + self.ncam,
                      self.hdim),  # fc1
            nn.Dropout(),
            nn.Linear(self.hdim, self.hdim),  # fc2
            nn.Dropout(),
            nn.Linear(self.hdim, self.npose),  # regress pose
            nn.Linear(self.hdim, self.nbeta),  # regress beta
            nn.Linear(self.hdim, self.ncam)  # regress cam
        ])

        def _get_clones(module, N):
            return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

        # last reg_branch is used to generate proposal from
        # encode feature map when as_two_stage is True.
        num_pred = (self.transformer.decoder.num_layers + 1) if \
            self.as_two_stage else self.transformer.decoder.num_layers

        if self.with_box_refine:
            self.cls_branches = _get_clones(fc_cls, num_pred)
            self.reg_branches = _get_clones(reg_branch, num_pred)
            self.smpl_branches = _get_clones(smpl_branch, num_pred)
        else:

            self.cls_branches = nn.ModuleList(
                [fc_cls for _ in range(num_pred)])
            self.reg_branches = nn.ModuleList(
                [reg_branch for _ in range(num_pred)])
            self.smpl_branches = nn.ModuleList(
                [smpl_branch for _ in range(num_pred)])
        if not self.as_two_stage:
            self.query_embedding = nn.Embedding(self.num_query,
                                                self.embed_dims * 2)

    def regress_smpl(self,
                     lvl,
                     feature,
                     init_pose=None,
                     init_shape=None,
                     init_cam=None,
                     n_iter=3):
        batch_size = feature.shape[0]
        num_query = feature.shape[1]
        if init_pose is None:
            init_pose = self.init_pose.expand(batch_size, num_query, -1)
        if init_shape is None:
            init_shape = self.init_shape.expand(batch_size, num_query, -1)
        if init_cam is None:
            init_cam = self.init_cam.expand(batch_size, num_query, -1)

        pred_pose = init_pose
        pred_shape = init_shape
        pred_cam = init_cam

        for _ in range(n_iter):
            xc = torch.cat([feature, pred_pose, pred_shape, pred_cam], -1)
            xc = self.smpl_branches[lvl][0](xc)  # fc1
            xc = self.smpl_branches[lvl][1](xc)  # drop
            xc = self.smpl_branches[lvl][2](xc)  # fc2
            xc = self.smpl_branches[lvl][3](xc)  # drop
            pred_pose = self.smpl_branches[lvl][4](xc) + pred_pose  # reg pose
            pred_shape = self.smpl_branches[lvl][5](
                xc) + pred_shape  # reg beat
            pred_cam = self.smpl_branches[lvl][6](xc) + pred_cam  # reg cam

        pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, num_query,
                                                      24, 3, 3)
        return pred_rotmat, pred_shape, pred_cam

    def init_weights(self):
        """Initialize weights of the DeformDETR head."""
        self.transformer.init_weights()
        if self.loss_cls.use_sigmoid:
            bias_init = bias_init_with_prob(0.01)
            for m in self.cls_branches:
                nn.init.constant_(m.bias, bias_init)
        for m in self.reg_branches:
            constant_init(m[-1], 0, bias=0)
        nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0)
        if self.as_two_stage:
            for m in self.reg_branches:
                nn.init.constant_(m[-1].bias.data[2:], 0.0)

    def forward(self, mlvl_feats, img_metas):
        """Forward function.

        Args:
            mlvl_feats (tuple[Tensor]): Features from the upstream
                network, each is a 4D-tensor with shape
                (N, C, H, W).
            img_metas (list[dict]): List of image information.

        Returns:
            all_cls_scores (Tensor): Outputs from the classification head, \
                shape [nb_dec, bs, num_query, cls_out_channels]. Note \
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression \
                head with normalized coordinate format (cx, cy, w, h). \
                Shape [nb_dec, bs, num_query, 4].
            enc_outputs_class (Tensor): The score of each point on encode \
                feature map, has shape (N, h*w, num_class). Only when \
                as_two_stage is True it would be returned, otherwise \
                `None` would be returned.
            enc_outputs_coord (Tensor): The proposal generate from the \
                encode feature map, has shape (N, h*w, 4). Only when \
                as_two_stage is True it would be returned, otherwise \
                `None` would be returned.
        """

        batch_size = mlvl_feats[0].size(0)
        input_img_h, input_img_w = img_metas[0]['batch_input_shape']
        img_masks = mlvl_feats[0].new_ones(
            (batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w = img_metas[img_id]['img_shape']
            img_masks[img_id, :img_h, :img_w] = 0

        mlvl_masks = []
        mlvl_positional_encodings = []
        for feat in mlvl_feats:
            mlvl_masks.append(
                F.interpolate(img_masks[None],
                              size=feat.shape[-2:]).to(torch.bool).squeeze(0))
            mlvl_positional_encodings.append(
                self.positional_encoding(mlvl_masks[-1]))

        query_embeds = None
        if not self.as_two_stage:
            query_embeds = self.query_embedding.weight
        hs, init_reference, inter_references, \
            enc_outputs_class, enc_outputs_coord = self.transformer(
                    mlvl_feats,
                    mlvl_masks,
                    query_embeds,
                    mlvl_positional_encodings,
                    reg_branches=self.reg_branches if self.with_box_refine else None,  # noqa:E501
                    cls_branches=self.cls_branches if self.as_two_stage else None,  # noqa:E501
                    smpl_branches=self.smpl_branches if self.with_box_refine else None  # noqa: E501
                )
        hs = hs.permute(0, 2, 1, 3)
        outputs_classes = []
        outputs_coords = []
        outputs_poses = []
        outputs_shapes = []
        outputs_cams = []
        for lvl in range(hs.shape[0]):
            if lvl == 0:
                reference = init_reference
            else:
                reference = inter_references[lvl - 1]
            reference = inverse_sigmoid(reference)
            outputs_class = self.cls_branches[lvl](hs[lvl])
            tmp = self.reg_branches[lvl](hs[lvl])
            if reference.shape[-1] == 4:
                tmp += reference
            else:
                assert reference.shape[-1] == 2
                tmp[..., :2] += reference
            outputs_coord = tmp.sigmoid()

            # smpl
            pred_pose, pred_betas, pred_cam = \
                self.regress_smpl(lvl, hs[lvl], n_iter=self.niter)
            outputs_poses.append(pred_pose)
            outputs_shapes.append(pred_betas)
            outputs_cams.append(pred_cam)
            outputs_classes.append(outputs_class)
            outputs_coords.append(outputs_coord)

        outputs_classes = torch.stack(outputs_classes)
        outputs_coords = torch.stack(outputs_coords)
        outputs_poses = torch.stack(outputs_poses)
        outputs_shapes = torch.stack(outputs_shapes)
        outputs_cams = torch.stack(outputs_cams)
        if self.as_two_stage:
            return outputs_classes, outputs_coords, \
                outputs_poses, outputs_shapes, outputs_cams, \
                enc_outputs_class, enc_outputs_coord.sigmoid()
        else:
            # return outputs_classes, outputs_coords, \
            return outputs_poses, outputs_shapes, outputs_cams, \
                None, None

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def loss(self,
             all_cls_scores,
             all_bbox_preds,
             enc_cls_scores,
             enc_bbox_preds,
             gt_bboxes_list,
             gt_labels_list,
             img_metas,
             gt_bboxes_ignore=None):
        """"Loss function.

        Args:
            all_cls_scores (Tensor): Classification score of all
                decoder layers, has shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds (Tensor): Sigmoid regression
                outputs of all decode layers. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            enc_cls_scores (Tensor): Classification scores of
                points on encode feature map , has shape
                (N, h*w, num_classes). Only be passed when as_two_stage is
                True, otherwise is None.
            enc_bbox_preds (Tensor): Regression results of each points
                on the encode feature map, has shape (N, h*w, 4). Only be
                passed when as_two_stage is True, otherwise is None.
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
                which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert gt_bboxes_ignore is None, \
            f'{self.__class__.__name__} only supports ' \
            f'for gt_bboxes_ignore setting to None.'

        num_dec_layers = len(all_cls_scores)
        all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
        all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)]
        all_gt_bboxes_ignore_list = [
            gt_bboxes_ignore for _ in range(num_dec_layers)
        ]
        img_metas_list = [img_metas for _ in range(num_dec_layers)]

        losses_cls, losses_bbox, losses_iou = multi_apply(
            self.loss_single, all_cls_scores, all_bbox_preds,
            all_gt_bboxes_list, all_gt_labels_list, img_metas_list,
            all_gt_bboxes_ignore_list)

        loss_dict = dict()
        # loss of proposal generated from encode feature map.
        if enc_cls_scores is not None:
            binary_labels_list = [
                torch.zeros_like(gt_labels_list[i])
                for i in range(len(img_metas))
            ]
            enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
                self.loss_single(enc_cls_scores, enc_bbox_preds,
                                 gt_bboxes_list, binary_labels_list,
                                 img_metas, gt_bboxes_ignore)
            loss_dict['enc_loss_cls'] = enc_loss_cls
            loss_dict['enc_loss_bbox'] = enc_losses_bbox
            loss_dict['enc_loss_iou'] = enc_losses_iou

        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]
        loss_dict['loss_iou'] = losses_iou[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1],
                                                       losses_bbox[:-1],
                                                       losses_iou[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
            num_dec_layer += 1
        return loss_dict

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def get_bboxes(self,
                   all_cls_scores,
                   all_bbox_preds,
                   enc_cls_scores,
                   enc_bbox_preds,
                   img_metas,
                   rescale=False):
        """Transform network outputs for a batch into bbox predictions.

        Args:
            all_cls_scores (Tensor): Classification score of all
                decoder layers, has shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds (Tensor): Sigmoid regression
                outputs of all decode layers. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            enc_cls_scores (Tensor): Classification scores of
                points on encode feature map , has shape
                (N, h*w, num_classes). Only be passed when as_two_stage is
                True, otherwise is None.
            enc_bbox_preds (Tensor): Regression results of each points
                on the encode feature map, has shape (N, h*w, 4). Only be
                passed when as_two_stage is True, otherwise is None.
            img_metas (list[dict]): Meta information of each image.
            rescale (bool, optional): If True, return boxes in original
                image space. Default False.

        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \
                The first item is an (n, 5) tensor, where the first 4 columns \
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the \
                5-th column is a score between 0 and 1. The second item is a \
                (n,) tensor where each item is the predicted class label of \
                the corresponding box.
        """
        cls_scores = all_cls_scores[-1]
        bbox_preds = all_bbox_preds[-1]

        result_list = []
        for img_id in range(len(img_metas)):
            cls_score = cls_scores[img_id]
            bbox_pred = bbox_preds[img_id]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
            proposals = self._get_bboxes_single(cls_score, bbox_pred,
                                                img_shape, scale_factor,
                                                rescale)
            result_list.append(proposals)
        return result_list