Spaces:
Sleeping
Sleeping
File size: 22,335 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
from typing import Union
import numpy
import torch
from detrsmpl.core.conventions.joints_mapping.standard_joint_angles import (
TRANSFORMATION_AA_TO_SJA,
TRANSFORMATION_SJA_TO_AA,
)
from .logger import get_root_logger
try:
from pytorch3d.transforms import (
axis_angle_to_matrix,
axis_angle_to_quaternion,
euler_angles_to_matrix,
matrix_to_euler_angles,
matrix_to_quaternion,
matrix_to_rotation_6d,
quaternion_to_axis_angle,
quaternion_to_matrix,
rotation_6d_to_matrix,
)
except (ImportError, ModuleNotFoundError):
import traceback
logger = get_root_logger()
stack_str = ''
for line in traceback.format_stack():
if 'frozen' not in line:
stack_str += line + '\n'
import_exception = traceback.format_exc() + '\n'
warning_msg = stack_str + import_exception + \
'If pytorch3d is not required,' +\
' this warning could be ignored.'
logger.warning(warning_msg)
class Compose:
def __init__(self, transforms: list):
"""Composes several transforms together. This transform does not
support torchscript.
Args:
transforms (list): (list of transform functions)
"""
self.transforms = transforms
def __call__(self,
rotation: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz',
**kwargs):
convention = convention.lower()
if not (set(convention) == set('xyz') and len(convention) == 3):
raise ValueError(f'Invalid convention {convention}.')
if isinstance(rotation, numpy.ndarray):
data_type = 'numpy'
rotation = torch.FloatTensor(rotation)
elif isinstance(rotation, torch.Tensor):
data_type = 'tensor'
else:
raise TypeError(
'Type of rotation should be torch.Tensor or numpy.ndarray')
for t in self.transforms:
if 'convention' in t.__code__.co_varnames:
rotation = t(rotation, convention.upper(), **kwargs)
else:
rotation = t(rotation, **kwargs)
if data_type == 'numpy':
rotation = rotation.detach().cpu().numpy()
return rotation
def aa_to_rotmat(
axis_angle: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""
Convert axis_angle to rotation matrixs.
Args:
axis_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3, 3).
"""
if axis_angle.shape[-1] != 3:
raise ValueError(
f'Invalid input axis angles shape f{axis_angle.shape}.')
t = Compose([axis_angle_to_matrix])
return t(axis_angle)
def aa_to_quat(
axis_angle: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""
Convert axis_angle to quaternions.
Args:
axis_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 4).
"""
if axis_angle.shape[-1] != 3:
raise ValueError(f'Invalid input axis angles f{axis_angle.shape}.')
t = Compose([axis_angle_to_quaternion])
return t(axis_angle)
def ee_to_rotmat(euler_angle: Union[torch.Tensor, numpy.ndarray],
convention='xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert euler angle to rotation matrixs.
Args:
euler_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3, 3).
"""
if euler_angle.shape[-1] != 3:
raise ValueError(
f'Invalid input euler angles shape f{euler_angle.shape}.')
t = Compose([euler_angles_to_matrix])
return t(euler_angle, convention.upper())
def rotmat_to_ee(
matrix: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation matrixs to euler angle.
Args:
matrix (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3, 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3:
raise ValueError(f'Invalid rotation matrix shape f{matrix.shape}.')
t = Compose([matrix_to_euler_angles])
return t(matrix, convention.upper())
def rotmat_to_quat(
matrix: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation matrixs to quaternions.
Args:
matrix (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3, 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 4).
"""
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3:
raise ValueError(f'Invalid rotation matrix shape f{matrix.shape}.')
t = Compose([matrix_to_quaternion])
return t(matrix)
def rotmat_to_rot6d(
matrix: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation matrixs to rotation 6d representations.
Args:
matrix (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3, 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 6).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3:
raise ValueError(f'Invalid rotation matrix shape f{matrix.shape}.')
t = Compose([matrix_to_rotation_6d])
return t(matrix)
def quat_to_aa(
quaternions: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert quaternions to axis angles.
Args:
quaternions (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
if quaternions.shape[-1] != 4:
raise ValueError(f'Invalid input quaternions f{quaternions.shape}.')
t = Compose([quaternion_to_axis_angle])
return t(quaternions)
def quat_to_rotmat(
quaternions: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert quaternions to rotation matrixs.
Args:
quaternions (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3, 3).
"""
if quaternions.shape[-1] != 4:
raise ValueError(
f'Invalid input quaternions shape f{quaternions.shape}.')
t = Compose([quaternion_to_matrix])
return t(quaternions)
def rot6d_to_rotmat(
rotation_6d: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation 6d representations to rotation matrixs.
Args:
rotation_6d (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 6). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3, 3).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if rotation_6d.shape[-1] != 6:
raise ValueError(f'Invalid input rotation_6d f{rotation_6d.shape}.')
t = Compose([rotation_6d_to_matrix])
return t(rotation_6d)
def aa_to_ee(axis_angle: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert axis angles to euler angle.
Args:
axis_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
if axis_angle.shape[-1] != 3:
raise ValueError(
f'Invalid input axis_angle shape f{axis_angle.shape}.')
t = Compose([axis_angle_to_matrix, matrix_to_euler_angles])
return t(axis_angle, convention)
def aa_to_rot6d(
axis_angle: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert axis angles to rotation 6d representations.
Args:
axis_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 6).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if axis_angle.shape[-1] != 3:
raise ValueError(f'Invalid input axis_angle f{axis_angle.shape}.')
t = Compose([axis_angle_to_matrix, matrix_to_rotation_6d])
return t(axis_angle)
def ee_to_aa(euler_angle: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert euler angles to axis angles.
Args:
euler_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
if euler_angle.shape[-1] != 3:
raise ValueError(f'Invalid input euler_angle f{euler_angle.shape}.')
t = Compose([
euler_angles_to_matrix, matrix_to_quaternion, quaternion_to_axis_angle
])
return t(euler_angle, convention)
def ee_to_quat(euler_angle: Union[torch.Tensor, numpy.ndarray],
convention='xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert euler angles to quaternions.
Args:
euler_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 4).
"""
if euler_angle.shape[-1] != 3:
raise ValueError(f'Invalid input euler_angle f{euler_angle.shape}.')
t = Compose([euler_angles_to_matrix, matrix_to_quaternion])
return t(euler_angle, convention)
def ee_to_rot6d(euler_angle: Union[torch.Tensor, numpy.ndarray],
convention='xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert euler angles to rotation 6d representation.
Args:
euler_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 6).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if euler_angle.shape[-1] != 3:
raise ValueError(f'Invalid input euler_angle f{euler_angle.shape}.')
t = Compose([euler_angles_to_matrix, matrix_to_rotation_6d])
return t(euler_angle, convention)
def rotmat_to_aa(
matrix: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation matrixs to axis angles.
Args:
matrix (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 3, 3). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3:
raise ValueError(f'Invalid rotation matrix shape f{matrix.shape}.')
t = Compose([matrix_to_quaternion, quaternion_to_axis_angle])
return t(matrix)
def quat_to_ee(quaternions: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert quaternions to euler angles.
Args:
quaternions (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 4). ndim of input is unlimited.
convention (str, optional): Convention string of three letters
from {“x”, “y”, and “z”}. Defaults to 'xyz'.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
if quaternions.shape[-1] != 4:
raise ValueError(f'Invalid input quaternions f{quaternions.shape}.')
t = Compose([quaternion_to_matrix, matrix_to_euler_angles])
return t(quaternions, convention)
def quat_to_rot6d(
quaternions: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert quaternions to rotation 6d representations.
Args:
quaternions (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 4). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 6).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if quaternions.shape[-1] != 4:
raise ValueError(f'Invalid input quaternions f{quaternions.shape}.')
t = Compose([quaternion_to_matrix, matrix_to_rotation_6d])
return t(quaternions)
def rot6d_to_aa(
rotation_6d: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation 6d representations to axis angles.
Args:
rotation_6d (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 6). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if rotation_6d.shape[-1] != 6:
raise ValueError(f'Invalid input rotation_6d f{rotation_6d.shape}.')
t = Compose([
rotation_6d_to_matrix, matrix_to_quaternion, quaternion_to_axis_angle
])
return t(rotation_6d)
def rot6d_to_ee(rotation_6d: Union[torch.Tensor, numpy.ndarray],
convention: str = 'xyz') -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation 6d representations to euler angles.
Args:
rotation_6d (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 6). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if rotation_6d.shape[-1] != 6:
raise ValueError(f'Invalid input rotation_6d f{rotation_6d.shape}.')
t = Compose([rotation_6d_to_matrix, matrix_to_euler_angles])
return t(rotation_6d, convention)
def rot6d_to_quat(
rotation_6d: Union[torch.Tensor, numpy.ndarray]
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert rotation 6d representations to quaternions.
Args:
rotation (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 6). ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 4).
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
if rotation_6d.shape[-1] != 6:
raise ValueError(
f'Invalid input rotation_6d shape f{rotation_6d.shape}.')
t = Compose([rotation_6d_to_matrix, matrix_to_quaternion])
return t(rotation_6d)
def aa_to_sja(
axis_angle: Union[torch.Tensor, numpy.ndarray],
R_t: Union[torch.Tensor, numpy.ndarray] = TRANSFORMATION_AA_TO_SJA,
R_t_inv: Union[torch.Tensor, numpy.ndarray] = TRANSFORMATION_SJA_TO_AA
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert axis-angles to standard joint angles.
Args:
axis_angle (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 21, 3), ndim of input is unlimited.
R_t (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 21, 3, 3). Transformation matrices from
original axis-angle coordinate system to
standard joint angle coordinate system,
ndim of input is unlimited.
R_t_inv (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 21, 3, 3). Transformation matrices from
standard joint angle coordinate system to
original axis-angle coordinate system,
ndim of input is unlimited.
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
def _aa_to_sja(aa, R_t, R_t_inv):
R_aa = axis_angle_to_matrix(aa)
R_sja = R_t @ R_aa @ R_t_inv
sja = matrix_to_euler_angles(R_sja, convention='XYZ')
return sja
if axis_angle.shape[-2:] != (21, 3):
raise ValueError(
f'Invalid input axis angles shape f{axis_angle.shape}.')
if R_t.shape[-3:] != (21, 3, 3):
raise ValueError(f'Invalid input R_t shape f{R_t.shape}.')
if R_t_inv.shape[-3:] != (21, 3, 3):
raise ValueError(f'Invalid input R_t_inv shape f{R_t.shape}.')
t = Compose([_aa_to_sja])
return t(axis_angle, R_t=R_t, R_t_inv=R_t_inv)
def sja_to_aa(
sja: Union[torch.Tensor, numpy.ndarray],
R_t: Union[torch.Tensor, numpy.ndarray] = TRANSFORMATION_AA_TO_SJA,
R_t_inv: Union[torch.Tensor, numpy.ndarray] = TRANSFORMATION_SJA_TO_AA
) -> Union[torch.Tensor, numpy.ndarray]:
"""Convert standard joint angles to axis angles.
Args:
sja (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 21, 3). ndim of input is unlimited.
R_t (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 21, 3, 3). Transformation matrices from
original axis-angle coordinate system to
standard joint angle coordinate system
R_t_inv (Union[torch.Tensor, numpy.ndarray]): input shape
should be (..., 21, 3, 3). Transformation matrices from
standard joint angle coordinate system to
original axis-angle coordinate system
Returns:
Union[torch.Tensor, numpy.ndarray]: shape would be (..., 3).
"""
def _sja_to_aa(sja, R_t, R_t_inv):
R_sja = euler_angles_to_matrix(sja, convention='XYZ')
R_aa = R_t_inv @ R_sja @ R_t
aa = quaternion_to_axis_angle(matrix_to_quaternion(R_aa))
return aa
if sja.shape[-2:] != (21, 3):
raise ValueError(f'Invalid input axis angles shape f{sja.shape}.')
if R_t.shape[-3:] != (21, 3, 3):
raise ValueError(f'Invalid input R_t shape f{R_t.shape}.')
if R_t_inv.shape[-3:] != (21, 3, 3):
raise ValueError(f'Invalid input R_t_inv shape f{R_t.shape}.')
t = Compose([_sja_to_aa])
return t(sja, R_t=R_t, R_t_inv=R_t_inv)
def make_homegeneous_rotmat_batch(input: torch.Tensor) -> torch.Tensor:
"""Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor.
Parameters
----------
:param input: A tensor of dimensions batch size x 3 x 4
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1)
"""
batch_size = input.shape[0]
row_append = torch.tensor([0.0, 0.0, 0.0, 1.0], dtype=torch.float)
row_append.requires_grad = False
padded_tensor = torch.cat(
[input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], dim=1)
return padded_tensor
def make_homegeneous_rotmat(input: torch.Tensor) -> torch.Tensor:
"""Appends a row of [0,0,0,1] to a 3 x 4 Tensor.
Parameters
----------
:param input: A tensor of dimensions 3 x 4
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1)
"""
row_append = torch.tensor([0.0, 0.0, 0.0, 1.0], dtype=torch.float)
row_append.requires_grad = False
padded_tensor = torch.cat(input, row_append, dim=1)
return padded_tensor
|