File size: 12,977 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
import torch.nn as nn

from mmcv.cnn.bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
                             PADDING_LAYERS, PLUGIN_LAYERS,
                             build_activation_layer, build_conv_layer,
                             build_norm_layer, build_padding_layer,
                             build_plugin_layer, build_upsample_layer, is_norm)
from mmcv.cnn.bricks.norm import infer_abbr as infer_norm_abbr
from mmcv.cnn.bricks.plugin import infer_abbr as infer_plugin_abbr
from mmcv.cnn.bricks.upsample import PixelShufflePack
from mmcv.utils.parrots_wrapper import _BatchNorm


def test_build_conv_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'Conv2d'
        build_conv_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict(kernel_size=3)
        build_conv_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported conv type
        cfg = dict(type='FancyConv')
        build_conv_layer(cfg)

    kwargs = dict(
        in_channels=4, out_channels=8, kernel_size=3, groups=2, dilation=2)
    cfg = None
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.Conv2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    cfg = dict(type='Conv')
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.Conv2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    cfg = dict(type='deconv')
    layer = build_conv_layer(cfg, **kwargs)
    assert isinstance(layer, nn.ConvTranspose2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.groups == kwargs['groups']
    assert layer.dilation == (kwargs['dilation'], kwargs['dilation'])

    # sparse convs cannot support the case when groups>1
    kwargs.pop('groups')

    for type_name, module in CONV_LAYERS.module_dict.items():
        cfg = dict(type=type_name)
        # SparseInverseConv2d and SparseInverseConv3d do not have the argument
        # 'dilation'
        if type_name == 'SparseInverseConv2d' or type_name == \
                'SparseInverseConv3d':
            kwargs.pop('dilation')
        layer = build_conv_layer(cfg, **kwargs)
        assert isinstance(layer, module)
        assert layer.in_channels == kwargs['in_channels']
        assert layer.out_channels == kwargs['out_channels']
        kwargs['dilation'] = 2  # recover the key


def test_infer_norm_abbr():
    with pytest.raises(TypeError):
        # class_type must be a class
        infer_norm_abbr(0)

    class MyNorm:

        _abbr_ = 'mn'

    assert infer_norm_abbr(MyNorm) == 'mn'

    class FancyBatchNorm:
        pass

    assert infer_norm_abbr(FancyBatchNorm) == 'bn'

    class FancyInstanceNorm:
        pass

    assert infer_norm_abbr(FancyInstanceNorm) == 'in'

    class FancyLayerNorm:
        pass

    assert infer_norm_abbr(FancyLayerNorm) == 'ln'

    class FancyGroupNorm:
        pass

    assert infer_norm_abbr(FancyGroupNorm) == 'gn'

    class FancyNorm:
        pass

    assert infer_norm_abbr(FancyNorm) == 'norm_layer'


def test_build_norm_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'BN'
        build_norm_layer(cfg, 3)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_norm_layer(cfg, 3)

    with pytest.raises(KeyError):
        # unsupported norm type
        cfg = dict(type='FancyNorm')
        build_norm_layer(cfg, 3)

    with pytest.raises(AssertionError):
        # postfix must be int or str
        cfg = dict(type='BN')
        build_norm_layer(cfg, 3, postfix=[1, 2])

    with pytest.raises(AssertionError):
        # `num_groups` must be in cfg when using 'GN'
        cfg = dict(type='GN')
        build_norm_layer(cfg, 3)

    # test each type of norm layer in norm_cfg
    abbr_mapping = {
        'BN': 'bn',
        'BN1d': 'bn',
        'BN2d': 'bn',
        'BN3d': 'bn',
        'SyncBN': 'bn',
        'GN': 'gn',
        'LN': 'ln',
        'IN': 'in',
        'IN1d': 'in',
        'IN2d': 'in',
        'IN3d': 'in',
    }
    for type_name, module in NORM_LAYERS.module_dict.items():
        if type_name == 'MMSyncBN':  # skip MMSyncBN
            continue
        for postfix in ['_test', 1]:
            cfg = dict(type=type_name)
            if type_name == 'GN':
                cfg['num_groups'] = 3
            name, layer = build_norm_layer(cfg, 3, postfix=postfix)
            assert name == abbr_mapping[type_name] + str(postfix)
            assert isinstance(layer, module)
            if type_name == 'GN':
                assert layer.num_channels == 3
                assert layer.num_groups == cfg['num_groups']
            elif type_name != 'LN':
                assert layer.num_features == 3


def test_build_activation_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'ReLU'
        build_activation_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_activation_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyReLU')
        build_activation_layer(cfg)

    # test each type of activation layer in activation_cfg
    for type_name, module in ACTIVATION_LAYERS.module_dict.items():
        cfg['type'] = type_name
        layer = build_activation_layer(cfg)
        assert isinstance(layer, module)

    # sanity check for Clamp
    act = build_activation_layer(dict(type='Clamp'))
    x = torch.randn(10) * 1000
    y = act(x)
    assert np.logical_and((y >= -1).numpy(), (y <= 1).numpy()).all()
    act = build_activation_layer(dict(type='Clip', min=0))
    y = act(x)
    assert np.logical_and((y >= 0).numpy(), (y <= 1).numpy()).all()
    act = build_activation_layer(dict(type='Clamp', max=0))
    y = act(x)
    assert np.logical_and((y >= -1).numpy(), (y <= 0).numpy()).all()


def test_build_padding_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'reflect'
        build_padding_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_padding_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyPad')
        build_padding_layer(cfg)

    for type_name, module in PADDING_LAYERS.module_dict.items():
        cfg['type'] = type_name
        layer = build_padding_layer(cfg, 2)
        assert isinstance(layer, module)

    input_x = torch.randn(1, 2, 5, 5)
    cfg = dict(type='reflect')
    padding_layer = build_padding_layer(cfg, 2)
    res = padding_layer(input_x)
    assert res.shape == (1, 2, 9, 9)


def test_upsample_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'bilinear'
        build_upsample_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_upsample_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported activation type
        cfg = dict(type='FancyUpsample')
        build_upsample_layer(cfg)

    for type_name in ['nearest', 'bilinear']:
        cfg['type'] = type_name
        layer = build_upsample_layer(cfg)
        assert isinstance(layer, nn.Upsample)
        assert layer.mode == type_name

    cfg = dict(
        type='deconv', in_channels=3, out_channels=3, kernel_size=3, stride=2)
    layer = build_upsample_layer(cfg)
    assert isinstance(layer, nn.ConvTranspose2d)

    cfg = dict(type='deconv')
    kwargs = dict(in_channels=3, out_channels=3, kernel_size=3, stride=2)
    layer = build_upsample_layer(cfg, **kwargs)
    assert isinstance(layer, nn.ConvTranspose2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.stride == (kwargs['stride'], kwargs['stride'])

    layer = build_upsample_layer(cfg, 3, 3, 3, 2)
    assert isinstance(layer, nn.ConvTranspose2d)
    assert layer.in_channels == kwargs['in_channels']
    assert layer.out_channels == kwargs['out_channels']
    assert layer.kernel_size == (kwargs['kernel_size'], kwargs['kernel_size'])
    assert layer.stride == (kwargs['stride'], kwargs['stride'])

    cfg = dict(
        type='pixel_shuffle',
        in_channels=3,
        out_channels=3,
        scale_factor=2,
        upsample_kernel=3)
    layer = build_upsample_layer(cfg)

    assert isinstance(layer, PixelShufflePack)
    assert layer.scale_factor == 2
    assert layer.upsample_kernel == 3


def test_pixel_shuffle_pack():
    x_in = torch.rand(2, 3, 10, 10)
    pixel_shuffle = PixelShufflePack(3, 3, scale_factor=2, upsample_kernel=3)
    assert pixel_shuffle.upsample_conv.kernel_size == (3, 3)
    x_out = pixel_shuffle(x_in)
    assert x_out.shape == (2, 3, 20, 20)


def test_is_norm():
    norm_set1 = [
        nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.InstanceNorm1d,
        nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm
    ]
    norm_set2 = [nn.GroupNorm]
    for norm_type in norm_set1:
        layer = norm_type(3)
        assert is_norm(layer)
        assert not is_norm(layer, exclude=(norm_type, ))
    for norm_type in norm_set2:
        layer = norm_type(3, 6)
        assert is_norm(layer)
        assert not is_norm(layer, exclude=(norm_type, ))

    class MyNorm(nn.BatchNorm2d):
        pass

    layer = MyNorm(3)
    assert is_norm(layer)
    assert not is_norm(layer, exclude=_BatchNorm)
    assert not is_norm(layer, exclude=(_BatchNorm, ))

    layer = nn.Conv2d(3, 8, 1)
    assert not is_norm(layer)

    with pytest.raises(TypeError):
        layer = nn.BatchNorm1d(3)
        is_norm(layer, exclude='BN')

    with pytest.raises(TypeError):
        layer = nn.BatchNorm1d(3)
        is_norm(layer, exclude=('BN', ))


def test_infer_plugin_abbr():
    with pytest.raises(TypeError):
        # class_type must be a class
        infer_plugin_abbr(0)

    class MyPlugin:

        _abbr_ = 'mp'

    assert infer_plugin_abbr(MyPlugin) == 'mp'

    class FancyPlugin:
        pass

    assert infer_plugin_abbr(FancyPlugin) == 'fancy_plugin'


def test_build_plugin_layer():
    with pytest.raises(TypeError):
        # cfg must be a dict
        cfg = 'Plugin'
        build_plugin_layer(cfg)

    with pytest.raises(KeyError):
        # `type` must be in cfg
        cfg = dict()
        build_plugin_layer(cfg)

    with pytest.raises(KeyError):
        # unsupported plugin type
        cfg = dict(type='FancyPlugin')
        build_plugin_layer(cfg)

    with pytest.raises(AssertionError):
        # postfix must be int or str
        cfg = dict(type='ConvModule')
        build_plugin_layer(cfg, postfix=[1, 2])

    # test ContextBlock
    for postfix in ['', '_test', 1]:
        cfg = dict(type='ContextBlock')
        name, layer = build_plugin_layer(
            cfg, postfix=postfix, in_channels=16, ratio=1. / 4)
        assert name == 'context_block' + str(postfix)
        assert isinstance(layer, PLUGIN_LAYERS.module_dict['ContextBlock'])

    # test GeneralizedAttention
    for postfix in ['', '_test', 1]:
        cfg = dict(type='GeneralizedAttention')
        name, layer = build_plugin_layer(cfg, postfix=postfix, in_channels=16)
        assert name == 'gen_attention_block' + str(postfix)
        assert isinstance(layer,
                          PLUGIN_LAYERS.module_dict['GeneralizedAttention'])

    # test NonLocal2d
    for postfix in ['', '_test', 1]:
        cfg = dict(type='NonLocal2d')
        name, layer = build_plugin_layer(cfg, postfix=postfix, in_channels=16)
        assert name == 'nonlocal_block' + str(postfix)
        assert isinstance(layer, PLUGIN_LAYERS.module_dict['NonLocal2d'])

    # test ConvModule
    for postfix in ['', '_test', 1]:
        cfg = dict(type='ConvModule')
        name, layer = build_plugin_layer(
            cfg,
            postfix=postfix,
            in_channels=16,
            out_channels=4,
            kernel_size=3)
        assert name == 'conv_block' + str(postfix)
        assert isinstance(layer, PLUGIN_LAYERS.module_dict['ConvModule'])